ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelimc Unicode version

Theorem dvelimc 2394
Description: Version of dvelim 2068 for classes. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypotheses
Ref Expression
dvelimc.1  |-  F/_ x A
dvelimc.2  |-  F/_ z B
dvelimc.3  |-  ( z  =  y  ->  A  =  B )
Assertion
Ref Expression
dvelimc  |-  ( -. 
A. x  x  =  y  ->  F/_ x B )

Proof of Theorem dvelimc
StepHypRef Expression
1 nftru 1512 . . 3  |-  F/ x T.
2 nftru 1512 . . 3  |-  F/ z T.
3 dvelimc.1 . . . 4  |-  F/_ x A
43a1i 9 . . 3  |-  ( T. 
->  F/_ x A )
5 dvelimc.2 . . . 4  |-  F/_ z B
65a1i 9 . . 3  |-  ( T. 
->  F/_ z B )
7 dvelimc.3 . . . 4  |-  ( z  =  y  ->  A  =  B )
87a1i 9 . . 3  |-  ( T. 
->  ( z  =  y  ->  A  =  B ) )
91, 2, 4, 6, 8dvelimdc 2393 . 2  |-  ( T. 
->  ( -.  A. x  x  =  y  ->  F/_ x B ) )
109mptru 1404 1  |-  ( -. 
A. x  x  =  y  ->  F/_ x B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1393    = wceq 1395   T. wtru 1396   F/_wnfc 2359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-cleq 2222  df-clel 2225  df-nfc 2361
This theorem is referenced by:  nfcvf  2395
  Copyright terms: Public domain W3C validator