ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelimc Unicode version

Theorem dvelimc 2361
Description: Version of dvelim 2036 for classes. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypotheses
Ref Expression
dvelimc.1  |-  F/_ x A
dvelimc.2  |-  F/_ z B
dvelimc.3  |-  ( z  =  y  ->  A  =  B )
Assertion
Ref Expression
dvelimc  |-  ( -. 
A. x  x  =  y  ->  F/_ x B )

Proof of Theorem dvelimc
StepHypRef Expression
1 nftru 1480 . . 3  |-  F/ x T.
2 nftru 1480 . . 3  |-  F/ z T.
3 dvelimc.1 . . . 4  |-  F/_ x A
43a1i 9 . . 3  |-  ( T. 
->  F/_ x A )
5 dvelimc.2 . . . 4  |-  F/_ z B
65a1i 9 . . 3  |-  ( T. 
->  F/_ z B )
7 dvelimc.3 . . . 4  |-  ( z  =  y  ->  A  =  B )
87a1i 9 . . 3  |-  ( T. 
->  ( z  =  y  ->  A  =  B ) )
91, 2, 4, 6, 8dvelimdc 2360 . 2  |-  ( T. 
->  ( -.  A. x  x  =  y  ->  F/_ x B ) )
109mptru 1373 1  |-  ( -. 
A. x  x  =  y  ->  F/_ x B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1362    = wceq 1364   T. wtru 1365   F/_wnfc 2326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-cleq 2189  df-clel 2192  df-nfc 2328
This theorem is referenced by:  nfcvf  2362
  Copyright terms: Public domain W3C validator