| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvelimc | GIF version | ||
| Description: Version of dvelim 2036 for classes. (Contributed by Mario Carneiro, 8-Oct-2016.) |
| Ref | Expression |
|---|---|
| dvelimc.1 | ⊢ Ⅎ𝑥𝐴 |
| dvelimc.2 | ⊢ Ⅎ𝑧𝐵 |
| dvelimc.3 | ⊢ (𝑧 = 𝑦 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| dvelimc | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1480 | . . 3 ⊢ Ⅎ𝑥⊤ | |
| 2 | nftru 1480 | . . 3 ⊢ Ⅎ𝑧⊤ | |
| 3 | dvelimc.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 5 | dvelimc.2 | . . . 4 ⊢ Ⅎ𝑧𝐵 | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑧𝐵) |
| 7 | dvelimc.3 | . . . 4 ⊢ (𝑧 = 𝑦 → 𝐴 = 𝐵) | |
| 8 | 7 | a1i 9 | . . 3 ⊢ (⊤ → (𝑧 = 𝑦 → 𝐴 = 𝐵)) |
| 9 | 1, 2, 4, 6, 8 | dvelimdc 2360 | . 2 ⊢ (⊤ → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝐵)) |
| 10 | 9 | mptru 1373 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1362 = wceq 1364 ⊤wtru 1365 Ⅎwnfc 2326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 |
| This theorem is referenced by: nfcvf 2362 |
| Copyright terms: Public domain | W3C validator |