ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelimc GIF version

Theorem dvelimc 2330
Description: Version of dvelim 2005 for classes. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypotheses
Ref Expression
dvelimc.1 𝑥𝐴
dvelimc.2 𝑧𝐵
dvelimc.3 (𝑧 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
dvelimc (¬ ∀𝑥 𝑥 = 𝑦𝑥𝐵)

Proof of Theorem dvelimc
StepHypRef Expression
1 nftru 1454 . . 3 𝑥
2 nftru 1454 . . 3 𝑧
3 dvelimc.1 . . . 4 𝑥𝐴
43a1i 9 . . 3 (⊤ → 𝑥𝐴)
5 dvelimc.2 . . . 4 𝑧𝐵
65a1i 9 . . 3 (⊤ → 𝑧𝐵)
7 dvelimc.3 . . . 4 (𝑧 = 𝑦𝐴 = 𝐵)
87a1i 9 . . 3 (⊤ → (𝑧 = 𝑦𝐴 = 𝐵))
91, 2, 4, 6, 8dvelimdc 2329 . 2 (⊤ → (¬ ∀𝑥 𝑥 = 𝑦𝑥𝐵))
109mptru 1352 1 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1341   = wceq 1343  wtru 1344  wnfc 2295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-cleq 2158  df-clel 2161  df-nfc 2297
This theorem is referenced by:  nfcvf  2331
  Copyright terms: Public domain W3C validator