ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelimc GIF version

Theorem dvelimc 2358
Description: Version of dvelim 2033 for classes. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypotheses
Ref Expression
dvelimc.1 𝑥𝐴
dvelimc.2 𝑧𝐵
dvelimc.3 (𝑧 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
dvelimc (¬ ∀𝑥 𝑥 = 𝑦𝑥𝐵)

Proof of Theorem dvelimc
StepHypRef Expression
1 nftru 1477 . . 3 𝑥
2 nftru 1477 . . 3 𝑧
3 dvelimc.1 . . . 4 𝑥𝐴
43a1i 9 . . 3 (⊤ → 𝑥𝐴)
5 dvelimc.2 . . . 4 𝑧𝐵
65a1i 9 . . 3 (⊤ → 𝑧𝐵)
7 dvelimc.3 . . . 4 (𝑧 = 𝑦𝐴 = 𝐵)
87a1i 9 . . 3 (⊤ → (𝑧 = 𝑦𝐴 = 𝐵))
91, 2, 4, 6, 8dvelimdc 2357 . 2 (⊤ → (¬ ∀𝑥 𝑥 = 𝑦𝑥𝐵))
109mptru 1373 1 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1362   = wceq 1364  wtru 1365  wnfc 2323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-cleq 2186  df-clel 2189  df-nfc 2325
This theorem is referenced by:  nfcvf  2359
  Copyright terms: Public domain W3C validator