ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelimc GIF version

Theorem dvelimc 2321
Description: Version of dvelim 1997 for classes. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypotheses
Ref Expression
dvelimc.1 𝑥𝐴
dvelimc.2 𝑧𝐵
dvelimc.3 (𝑧 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
dvelimc (¬ ∀𝑥 𝑥 = 𝑦𝑥𝐵)

Proof of Theorem dvelimc
StepHypRef Expression
1 nftru 1446 . . 3 𝑥
2 nftru 1446 . . 3 𝑧
3 dvelimc.1 . . . 4 𝑥𝐴
43a1i 9 . . 3 (⊤ → 𝑥𝐴)
5 dvelimc.2 . . . 4 𝑧𝐵
65a1i 9 . . 3 (⊤ → 𝑧𝐵)
7 dvelimc.3 . . . 4 (𝑧 = 𝑦𝐴 = 𝐵)
87a1i 9 . . 3 (⊤ → (𝑧 = 𝑦𝐴 = 𝐵))
91, 2, 4, 6, 8dvelimdc 2320 . 2 (⊤ → (¬ ∀𝑥 𝑥 = 𝑦𝑥𝐵))
109mptru 1344 1 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1333   = wceq 1335  wtru 1336  wnfc 2286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-cleq 2150  df-clel 2153  df-nfc 2288
This theorem is referenced by:  nfcvf  2322
  Copyright terms: Public domain W3C validator