| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > el | Unicode version | ||
| Description: Every set is an element of some other set. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| el |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfpow 4219 |
. 2
| |
| 2 | ax-14 2179 |
. . . . 5
| |
| 3 | 2 | alrimiv 1897 |
. . . 4
|
| 4 | ax-13 2178 |
. . . 4
| |
| 5 | 3, 4 | embantd 56 |
. . 3
|
| 6 | 5 | spimv 1834 |
. 2
|
| 7 | 1, 6 | eximii 1625 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-13 2178 ax-14 2179 ax-pow 4218 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 |
| This theorem is referenced by: dtruarb 4235 |
| Copyright terms: Public domain | W3C validator |