Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axpow3 | Unicode version |
Description: A variant of the Axiom of Power Sets ax-pow 4169. For any set , there exists a set whose members are exactly the subsets of i.e. the power set of . Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
Ref | Expression |
---|---|
axpow3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axpow2 4171 | . . 3 | |
2 | 1 | bm1.3ii 4119 | . 2 |
3 | bicom 140 | . . . 4 | |
4 | 3 | albii 1468 | . . 3 |
5 | 4 | exbii 1603 | . 2 |
6 | 2, 5 | mpbir 146 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 105 wal 1351 wex 1490 wss 3127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-in 3133 df-ss 3140 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |