ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpow3 Unicode version

Theorem axpow3 4229
Description: A variant of the Axiom of Power Sets ax-pow 4226. For any set  x, there exists a set  y whose members are exactly the subsets of  x i.e. the power set of  x. Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
axpow3  |-  E. y A. z ( z  C_  x 
<->  z  e.  y )
Distinct variable group:    x, y, z

Proof of Theorem axpow3
StepHypRef Expression
1 axpow2 4228 . . 3  |-  E. y A. z ( z  C_  x  ->  z  e.  y )
21bm1.3ii 4173 . 2  |-  E. y A. z ( z  e.  y  <->  z  C_  x
)
3 bicom 140 . . . 4  |-  ( ( z  C_  x  <->  z  e.  y )  <->  ( z  e.  y  <->  z  C_  x
) )
43albii 1494 . . 3  |-  ( A. z ( z  C_  x 
<->  z  e.  y )  <->  A. z ( z  e.  y  <->  z  C_  x
) )
54exbii 1629 . 2  |-  ( E. y A. z ( z  C_  x  <->  z  e.  y )  <->  E. y A. z ( z  e.  y  <->  z  C_  x
) )
62, 5mpbir 146 1  |-  E. y A. z ( z  C_  x 
<->  z  e.  y )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1371   E.wex 1516    C_ wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3176  df-ss 3183
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator