ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpow3 Unicode version

Theorem axpow3 4179
Description: A variant of the Axiom of Power Sets ax-pow 4176. For any set  x, there exists a set  y whose members are exactly the subsets of  x i.e. the power set of  x. Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
axpow3  |-  E. y A. z ( z  C_  x 
<->  z  e.  y )
Distinct variable group:    x, y, z

Proof of Theorem axpow3
StepHypRef Expression
1 axpow2 4178 . . 3  |-  E. y A. z ( z  C_  x  ->  z  e.  y )
21bm1.3ii 4126 . 2  |-  E. y A. z ( z  e.  y  <->  z  C_  x
)
3 bicom 140 . . . 4  |-  ( ( z  C_  x  <->  z  e.  y )  <->  ( z  e.  y  <->  z  C_  x
) )
43albii 1470 . . 3  |-  ( A. z ( z  C_  x 
<->  z  e.  y )  <->  A. z ( z  e.  y  <->  z  C_  x
) )
54exbii 1605 . 2  |-  ( E. y A. z ( z  C_  x  <->  z  e.  y )  <->  E. y A. z ( z  e.  y  <->  z  C_  x
) )
62, 5mpbir 146 1  |-  E. y A. z ( z  C_  x 
<->  z  e.  y )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1351   E.wex 1492    C_ wss 3131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-in 3137  df-ss 3144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator