ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpow3 Unicode version

Theorem axpow3 4096
Description: A variant of the Axiom of Power Sets ax-pow 4093. For any set  x, there exists a set  y whose members are exactly the subsets of  x i.e. the power set of  x. Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
axpow3  |-  E. y A. z ( z  C_  x 
<->  z  e.  y )
Distinct variable group:    x, y, z

Proof of Theorem axpow3
StepHypRef Expression
1 axpow2 4095 . . 3  |-  E. y A. z ( z  C_  x  ->  z  e.  y )
21bm1.3ii 4044 . 2  |-  E. y A. z ( z  e.  y  <->  z  C_  x
)
3 bicom 139 . . . 4  |-  ( ( z  C_  x  <->  z  e.  y )  <->  ( z  e.  y  <->  z  C_  x
) )
43albii 1446 . . 3  |-  ( A. z ( z  C_  x 
<->  z  e.  y )  <->  A. z ( z  e.  y  <->  z  C_  x
) )
54exbii 1584 . 2  |-  ( E. y A. z ( z  C_  x  <->  z  e.  y )  <->  E. y A. z ( z  e.  y  <->  z  C_  x
) )
62, 5mpbir 145 1  |-  E. y A. z ( z  C_  x 
<->  z  e.  y )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   A.wal 1329   E.wex 1468    C_ wss 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-11 1484  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-in 3072  df-ss 3079
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator