Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axpow3 | Unicode version |
Description: A variant of the Axiom of Power Sets ax-pow 4160. For any set , there exists a set whose members are exactly the subsets of i.e. the power set of . Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
Ref | Expression |
---|---|
axpow3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axpow2 4162 | . . 3 | |
2 | 1 | bm1.3ii 4110 | . 2 |
3 | bicom 139 | . . . 4 | |
4 | 3 | albii 1463 | . . 3 |
5 | 4 | exbii 1598 | . 2 |
6 | 2, 5 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wal 1346 wex 1485 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |