ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfpow Unicode version

Theorem zfpow 4177
Description: Axiom of Power Sets expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.)
Assertion
Ref Expression
zfpow  |-  E. x A. y ( A. x
( x  e.  y  ->  x  e.  z )  ->  y  e.  x )
Distinct variable group:    x, y, z

Proof of Theorem zfpow
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ax-pow 4176 . 2  |-  E. x A. y ( A. w
( w  e.  y  ->  w  e.  z )  ->  y  e.  x )
2 elequ1 2152 . . . . . . 7  |-  ( w  =  x  ->  (
w  e.  y  <->  x  e.  y ) )
3 elequ1 2152 . . . . . . 7  |-  ( w  =  x  ->  (
w  e.  z  <->  x  e.  z ) )
42, 3imbi12d 234 . . . . . 6  |-  ( w  =  x  ->  (
( w  e.  y  ->  w  e.  z )  <->  ( x  e.  y  ->  x  e.  z ) ) )
54cbvalv 1917 . . . . 5  |-  ( A. w ( w  e.  y  ->  w  e.  z )  <->  A. x
( x  e.  y  ->  x  e.  z ) )
65imbi1i 238 . . . 4  |-  ( ( A. w ( w  e.  y  ->  w  e.  z )  ->  y  e.  x )  <->  ( A. x ( x  e.  y  ->  x  e.  z )  ->  y  e.  x ) )
76albii 1470 . . 3  |-  ( A. y ( A. w
( w  e.  y  ->  w  e.  z )  ->  y  e.  x )  <->  A. y
( A. x ( x  e.  y  ->  x  e.  z )  ->  y  e.  x ) )
87exbii 1605 . 2  |-  ( E. x A. y ( A. w ( w  e.  y  ->  w  e.  z )  ->  y  e.  x )  <->  E. x A. y ( A. x
( x  e.  y  ->  x  e.  z )  ->  y  e.  x ) )
91, 8mpbi 145 1  |-  E. x A. y ( A. x
( x  e.  y  ->  x  e.  z )  ->  y  e.  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1351   E.wex 1492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-13 2150  ax-pow 4176
This theorem depends on definitions:  df-bi 117  df-nf 1461
This theorem is referenced by:  el  4180
  Copyright terms: Public domain W3C validator