| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > zfpow | Unicode version | ||
| Description: Axiom of Power Sets expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.) | 
| Ref | Expression | 
|---|---|
| zfpow | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-pow 4207 | 
. 2
 | |
| 2 | elequ1 2171 | 
. . . . . . 7
 | |
| 3 | elequ1 2171 | 
. . . . . . 7
 | |
| 4 | 2, 3 | imbi12d 234 | 
. . . . . 6
 | 
| 5 | 4 | cbvalv 1932 | 
. . . . 5
 | 
| 6 | 5 | imbi1i 238 | 
. . . 4
 | 
| 7 | 6 | albii 1484 | 
. . 3
 | 
| 8 | 7 | exbii 1619 | 
. 2
 | 
| 9 | 1, 8 | mpbi 145 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-13 2169 ax-pow 4207 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 | 
| This theorem is referenced by: el 4211 | 
| Copyright terms: Public domain | W3C validator |