ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dtruarb Unicode version

Theorem dtruarb 4206
Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). This theorem asserts the existence of two sets which do not equal each other; compare with dtruex 4573 in which we are given a set  y and go from there to a set  x which is not equal to it. (Contributed by Jim Kingdon, 2-Sep-2018.)
Assertion
Ref Expression
dtruarb  |-  E. x E. y  -.  x  =  y
Distinct variable group:    x, y

Proof of Theorem dtruarb
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 el 4193 . . 3  |-  E. x  z  e.  x
2 ax-nul 4144 . . . 4  |-  E. y A. z  -.  z  e.  y
3 sp 1522 . . . 4  |-  ( A. z  -.  z  e.  y  ->  -.  z  e.  y )
42, 3eximii 1613 . . 3  |-  E. y  -.  z  e.  y
5 eeanv 1944 . . 3  |-  ( E. x E. y ( z  e.  x  /\  -.  z  e.  y
)  <->  ( E. x  z  e.  x  /\  E. y  -.  z  e.  y ) )
61, 4, 5mpbir2an 944 . 2  |-  E. x E. y ( z  e.  x  /\  -.  z  e.  y )
7 nelneq2 2291 . . 3  |-  ( ( z  e.  x  /\  -.  z  e.  y
)  ->  -.  x  =  y )
872eximi 1612 . 2  |-  ( E. x E. y ( z  e.  x  /\  -.  z  e.  y
)  ->  E. x E. y  -.  x  =  y )
96, 8ax-mp 5 1  |-  E. x E. y  -.  x  =  y
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104   A.wal 1362   E.wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-13 2162  ax-14 2163  ax-ext 2171  ax-nul 4144  ax-pow 4189
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-cleq 2182  df-clel 2185
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator