| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vpwex | Unicode version | ||
| Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 4240 from vpwex 4239. (Revised by BJ, 10-Aug-2022.) |
| Ref | Expression |
|---|---|
| vpwex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pw 3628 |
. 2
| |
| 2 | axpow2 4236 |
. . . . 5
| |
| 3 | 2 | bm1.3ii 4181 |
. . . 4
|
| 4 | abeq2 2316 |
. . . . 5
| |
| 5 | 4 | exbii 1629 |
. . . 4
|
| 6 | 3, 5 | mpbir 146 |
. . 3
|
| 7 | 6 | issetri 2786 |
. 2
|
| 8 | 1, 7 | eqeltri 2280 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 df-in 3180 df-ss 3187 df-pw 3628 |
| This theorem is referenced by: pwexg 4240 pwnex 4514 exmidpw2en 7035 metuex 14432 istopon 14600 dmtopon 14610 tgdom 14659 |
| Copyright terms: Public domain | W3C validator |