| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vpwex | Unicode version | ||
| Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 4214 from vpwex 4213. (Revised by BJ, 10-Aug-2022.) |
| Ref | Expression |
|---|---|
| vpwex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pw 3608 |
. 2
| |
| 2 | axpow2 4210 |
. . . . 5
| |
| 3 | 2 | bm1.3ii 4155 |
. . . 4
|
| 4 | abeq2 2305 |
. . . . 5
| |
| 5 | 4 | exbii 1619 |
. . . 4
|
| 6 | 3, 5 | mpbir 146 |
. . 3
|
| 7 | 6 | issetri 2772 |
. 2
|
| 8 | 1, 7 | eqeltri 2269 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 df-in 3163 df-ss 3170 df-pw 3608 |
| This theorem is referenced by: pwexg 4214 pwnex 4485 exmidpw2en 6982 metuex 14187 istopon 14333 dmtopon 14343 tgdom 14392 |
| Copyright terms: Public domain | W3C validator |