ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vpwex Unicode version

Theorem vpwex 4174
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 4175 from vpwex 4174. (Revised by BJ, 10-Aug-2022.)
Assertion
Ref Expression
vpwex  |-  ~P x  e.  _V

Proof of Theorem vpwex
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pw 3574 . 2  |-  ~P x  =  { y  |  y 
C_  x }
2 axpow2 4171 . . . . 5  |-  E. z A. y ( y  C_  x  ->  y  e.  z )
32bm1.3ii 4119 . . . 4  |-  E. z A. y ( y  e.  z  <->  y  C_  x
)
4 abeq2 2284 . . . . 5  |-  ( z  =  { y  |  y  C_  x }  <->  A. y ( y  e.  z  <->  y  C_  x
) )
54exbii 1603 . . . 4  |-  ( E. z  z  =  {
y  |  y  C_  x }  <->  E. z A. y
( y  e.  z  <-> 
y  C_  x )
)
63, 5mpbir 146 . . 3  |-  E. z 
z  =  { y  |  y  C_  x }
76issetri 2744 . 2  |-  { y  |  y  C_  x }  e.  _V
81, 7eqeltri 2248 1  |-  ~P x  e.  _V
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1351    = wceq 1353   E.wex 1490    e. wcel 2146   {cab 2161   _Vcvv 2735    C_ wss 3127   ~Pcpw 3572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-11 1504  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-v 2737  df-in 3133  df-ss 3140  df-pw 3574
This theorem is referenced by:  pwexg  4175  pwnex  4443  istopon  13080  dmtopon  13090  tgdom  13141
  Copyright terms: Public domain W3C validator