ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vpwex Unicode version

Theorem vpwex 4212
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 4213 from vpwex 4212. (Revised by BJ, 10-Aug-2022.)
Assertion
Ref Expression
vpwex  |-  ~P x  e.  _V

Proof of Theorem vpwex
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pw 3607 . 2  |-  ~P x  =  { y  |  y 
C_  x }
2 axpow2 4209 . . . . 5  |-  E. z A. y ( y  C_  x  ->  y  e.  z )
32bm1.3ii 4154 . . . 4  |-  E. z A. y ( y  e.  z  <->  y  C_  x
)
4 abeq2 2305 . . . . 5  |-  ( z  =  { y  |  y  C_  x }  <->  A. y ( y  e.  z  <->  y  C_  x
) )
54exbii 1619 . . . 4  |-  ( E. z  z  =  {
y  |  y  C_  x }  <->  E. z A. y
( y  e.  z  <-> 
y  C_  x )
)
63, 5mpbir 146 . . 3  |-  E. z 
z  =  { y  |  y  C_  x }
76issetri 2772 . 2  |-  { y  |  y  C_  x }  e.  _V
81, 7eqeltri 2269 1  |-  ~P x  e.  _V
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1362    = wceq 1364   E.wex 1506    e. wcel 2167   {cab 2182   _Vcvv 2763    C_ wss 3157   ~Pcpw 3605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607
This theorem is referenced by:  pwexg  4213  pwnex  4484  exmidpw2en  6973  metuex  14111  istopon  14249  dmtopon  14259  tgdom  14308
  Copyright terms: Public domain W3C validator