ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vpwex Unicode version

Theorem vpwex 4181
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 4182 from vpwex 4181. (Revised by BJ, 10-Aug-2022.)
Assertion
Ref Expression
vpwex  |-  ~P x  e.  _V

Proof of Theorem vpwex
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pw 3579 . 2  |-  ~P x  =  { y  |  y 
C_  x }
2 axpow2 4178 . . . . 5  |-  E. z A. y ( y  C_  x  ->  y  e.  z )
32bm1.3ii 4126 . . . 4  |-  E. z A. y ( y  e.  z  <->  y  C_  x
)
4 abeq2 2286 . . . . 5  |-  ( z  =  { y  |  y  C_  x }  <->  A. y ( y  e.  z  <->  y  C_  x
) )
54exbii 1605 . . . 4  |-  ( E. z  z  =  {
y  |  y  C_  x }  <->  E. z A. y
( y  e.  z  <-> 
y  C_  x )
)
63, 5mpbir 146 . . 3  |-  E. z 
z  =  { y  |  y  C_  x }
76issetri 2748 . 2  |-  { y  |  y  C_  x }  e.  _V
81, 7eqeltri 2250 1  |-  ~P x  e.  _V
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1351    = wceq 1353   E.wex 1492    e. wcel 2148   {cab 2163   _Vcvv 2739    C_ wss 3131   ~Pcpw 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-v 2741  df-in 3137  df-ss 3144  df-pw 3579
This theorem is referenced by:  pwexg  4182  pwnex  4451  istopon  13552  dmtopon  13562  tgdom  13611
  Copyright terms: Public domain W3C validator