Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vpwex | Unicode version |
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 4175 from vpwex 4174. (Revised by BJ, 10-Aug-2022.) |
Ref | Expression |
---|---|
vpwex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pw 3574 | . 2 | |
2 | axpow2 4171 | . . . . 5 | |
3 | 2 | bm1.3ii 4119 | . . . 4 |
4 | abeq2 2284 | . . . . 5 | |
5 | 4 | exbii 1603 | . . . 4 |
6 | 3, 5 | mpbir 146 | . . 3 |
7 | 6 | issetri 2744 | . 2 |
8 | 1, 7 | eqeltri 2248 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 105 wal 1351 wceq 1353 wex 1490 wcel 2146 cab 2161 cvv 2735 wss 3127 cpw 3572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-v 2737 df-in 3133 df-ss 3140 df-pw 3574 |
This theorem is referenced by: pwexg 4175 pwnex 4443 istopon 13080 dmtopon 13090 tgdom 13141 |
Copyright terms: Public domain | W3C validator |