![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vpwex | Unicode version |
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 4209 from vpwex 4208. (Revised by BJ, 10-Aug-2022.) |
Ref | Expression |
---|---|
vpwex |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pw 3603 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | axpow2 4205 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | bm1.3ii 4150 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | abeq2 2302 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | exbii 1616 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | mpbir 146 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | issetri 2769 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 7 | eqeltri 2266 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 df-in 3159 df-ss 3166 df-pw 3603 |
This theorem is referenced by: pwexg 4209 pwnex 4480 exmidpw2en 6968 istopon 14181 dmtopon 14191 tgdom 14240 |
Copyright terms: Public domain | W3C validator |