| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vpwex | Unicode version | ||
| Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 4225 from vpwex 4224. (Revised by BJ, 10-Aug-2022.) |
| Ref | Expression |
|---|---|
| vpwex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pw 3618 |
. 2
| |
| 2 | axpow2 4221 |
. . . . 5
| |
| 3 | 2 | bm1.3ii 4166 |
. . . 4
|
| 4 | abeq2 2314 |
. . . . 5
| |
| 5 | 4 | exbii 1628 |
. . . 4
|
| 6 | 3, 5 | mpbir 146 |
. . 3
|
| 7 | 6 | issetri 2781 |
. 2
|
| 8 | 1, 7 | eqeltri 2278 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 df-in 3172 df-ss 3179 df-pw 3618 |
| This theorem is referenced by: pwexg 4225 pwnex 4497 exmidpw2en 7011 metuex 14350 istopon 14518 dmtopon 14528 tgdom 14577 |
| Copyright terms: Public domain | W3C validator |