ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vpwex Unicode version

Theorem vpwex 4224
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 4225 from vpwex 4224. (Revised by BJ, 10-Aug-2022.)
Assertion
Ref Expression
vpwex  |-  ~P x  e.  _V

Proof of Theorem vpwex
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pw 3618 . 2  |-  ~P x  =  { y  |  y 
C_  x }
2 axpow2 4221 . . . . 5  |-  E. z A. y ( y  C_  x  ->  y  e.  z )
32bm1.3ii 4166 . . . 4  |-  E. z A. y ( y  e.  z  <->  y  C_  x
)
4 abeq2 2314 . . . . 5  |-  ( z  =  { y  |  y  C_  x }  <->  A. y ( y  e.  z  <->  y  C_  x
) )
54exbii 1628 . . . 4  |-  ( E. z  z  =  {
y  |  y  C_  x }  <->  E. z A. y
( y  e.  z  <-> 
y  C_  x )
)
63, 5mpbir 146 . . 3  |-  E. z 
z  =  { y  |  y  C_  x }
76issetri 2781 . 2  |-  { y  |  y  C_  x }  e.  _V
81, 7eqeltri 2278 1  |-  ~P x  e.  _V
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1371    = wceq 1373   E.wex 1515    e. wcel 2176   {cab 2191   _Vcvv 2772    C_ wss 3166   ~Pcpw 3616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-v 2774  df-in 3172  df-ss 3179  df-pw 3618
This theorem is referenced by:  pwexg  4225  pwnex  4497  exmidpw2en  7011  metuex  14350  istopon  14518  dmtopon  14528  tgdom  14577
  Copyright terms: Public domain W3C validator