ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  el GIF version

Theorem el 4177
Description: Every set is an element of some other set. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
el 𝑦 𝑥𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem el
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 zfpow 4174 . 2 𝑦𝑧(∀𝑦(𝑦𝑧𝑦𝑥) → 𝑧𝑦)
2 ax-14 2151 . . . . 5 (𝑧 = 𝑥 → (𝑦𝑧𝑦𝑥))
32alrimiv 1874 . . . 4 (𝑧 = 𝑥 → ∀𝑦(𝑦𝑧𝑦𝑥))
4 ax-13 2150 . . . 4 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
53, 4embantd 56 . . 3 (𝑧 = 𝑥 → ((∀𝑦(𝑦𝑧𝑦𝑥) → 𝑧𝑦) → 𝑥𝑦))
65spimv 1811 . 2 (∀𝑧(∀𝑦(𝑦𝑧𝑦𝑥) → 𝑧𝑦) → 𝑥𝑦)
71, 6eximii 1602 1 𝑦 𝑥𝑦
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1351  wex 1492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-13 2150  ax-14 2151  ax-pow 4173
This theorem depends on definitions:  df-bi 117  df-nf 1461
This theorem is referenced by:  dtruarb  4190
  Copyright terms: Public domain W3C validator