| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > el | GIF version | ||
| Description: Every set is an element of some other set. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| el | ⊢ ∃𝑦 𝑥 ∈ 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfpow 4208 | . 2 ⊢ ∃𝑦∀𝑧(∀𝑦(𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦) | |
| 2 | ax-14 2170 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥)) | |
| 3 | 2 | alrimiv 1888 | . . . 4 ⊢ (𝑧 = 𝑥 → ∀𝑦(𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥)) |
| 4 | ax-13 2169 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑥 ∈ 𝑦)) | |
| 5 | 3, 4 | embantd 56 | . . 3 ⊢ (𝑧 = 𝑥 → ((∀𝑦(𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦) → 𝑥 ∈ 𝑦)) |
| 6 | 5 | spimv 1825 | . 2 ⊢ (∀𝑧(∀𝑦(𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦) → 𝑥 ∈ 𝑦) |
| 7 | 1, 6 | eximii 1616 | 1 ⊢ ∃𝑦 𝑥 ∈ 𝑦 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-13 2169 ax-14 2170 ax-pow 4207 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: dtruarb 4224 |
| Copyright terms: Public domain | W3C validator |