Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elab1 Unicode version

Theorem elab1 15429
Description: One implication of elab 2908. (Contributed by BJ, 21-Nov-2019.)
Hypothesis
Ref Expression
elab1.1  |-  ( x  =  A  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
elab1  |-  ( A  e.  { x  | 
ph }  ->  ps )
Distinct variable groups:    ps, x    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem elab1
StepHypRef Expression
1 nfv 1542 . 2  |-  F/ x ps
2 elab1.1 . 2  |-  ( x  =  A  ->  ( ph  ->  ps ) )
31, 2elabf1 15427 1  |-  ( A  e.  { x  | 
ph }  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   {cab 2182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator