Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elabf2 Unicode version

Theorem elabf2 13817
Description: One implication of elabf 2873. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
elabf2.nf  |-  F/ x ps
elabf2.s  |-  A  e. 
_V
elabf2.1  |-  ( x  =  A  ->  ( ps  ->  ph ) )
Assertion
Ref Expression
elabf2  |-  ( ps 
->  A  e.  { x  |  ph } )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem elabf2
StepHypRef Expression
1 elabf2.s . 2  |-  A  e. 
_V
2 nfcv 2312 . . 3  |-  F/_ x A
3 elabf2.nf . . 3  |-  F/ x ps
4 elabf2.1 . . 3  |-  ( x  =  A  ->  ( ps  ->  ph ) )
52, 3, 4elabgf2 13815 . 2  |-  ( A  e.  _V  ->  ( ps  ->  A  e.  {
x  |  ph }
) )
61, 5ax-mp 5 1  |-  ( ps 
->  A  e.  { x  |  ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   F/wnf 1453    e. wcel 2141   {cab 2156   _Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732
This theorem is referenced by:  elab2a  13819  bj-bdfindis  13982
  Copyright terms: Public domain W3C validator