Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elab2a Unicode version

Theorem elab2a 15920
Description: One implication of elab 2924. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
elab2a.s  |-  A  e. 
_V
elab2a.1  |-  ( x  =  A  ->  ( ps  ->  ph ) )
Assertion
Ref Expression
elab2a  |-  ( ps 
->  A  e.  { x  |  ph } )
Distinct variable groups:    ps, x    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem elab2a
StepHypRef Expression
1 nfv 1552 . 2  |-  F/ x ps
2 elab2a.s . 2  |-  A  e. 
_V
3 elab2a.1 . 2  |-  ( x  =  A  ->  ( ps  ->  ph ) )
41, 2, 3elabf2 15918 1  |-  ( ps 
->  A  e.  { x  |  ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   {cab 2193   _Vcvv 2776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator