Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elab2a Unicode version

Theorem elab2a 13665
Description: One implication of elab 2870. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
elab2a.s  |-  A  e. 
_V
elab2a.1  |-  ( x  =  A  ->  ( ps  ->  ph ) )
Assertion
Ref Expression
elab2a  |-  ( ps 
->  A  e.  { x  |  ph } )
Distinct variable groups:    ps, x    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem elab2a
StepHypRef Expression
1 nfv 1516 . 2  |-  F/ x ps
2 elab2a.s . 2  |-  A  e. 
_V
3 elab2a.1 . 2  |-  ( x  =  A  ->  ( ps  ->  ph ) )
41, 2, 3elabf2 13663 1  |-  ( ps 
->  A  e.  { x  |  ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   {cab 2151   _Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator