Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elab1 GIF version

Theorem elab1 15793
Description: One implication of elab 2918. (Contributed by BJ, 21-Nov-2019.)
Hypothesis
Ref Expression
elab1.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elab1 (𝐴 ∈ {𝑥𝜑} → 𝜓)
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elab1
StepHypRef Expression
1 nfv 1552 . 2 𝑥𝜓
2 elab1.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
31, 2elabf1 15791 1 (𝐴 ∈ {𝑥𝜑} → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  {cab 2192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator