| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > elab2a | GIF version | ||
| Description: One implication of elab 2947. (Contributed by BJ, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| elab2a.s | ⊢ 𝐴 ∈ V |
| elab2a.1 | ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜑)) |
| Ref | Expression |
|---|---|
| elab2a | ⊢ (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | elab2a.s | . 2 ⊢ 𝐴 ∈ V | |
| 3 | elab2a.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜑)) | |
| 4 | 1, 2, 3 | elabf2 16104 | 1 ⊢ (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 {cab 2215 Vcvv 2799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |