Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elab2a GIF version

Theorem elab2a 16106
Description: One implication of elab 2947. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
elab2a.s 𝐴 ∈ V
elab2a.1 (𝑥 = 𝐴 → (𝜓𝜑))
Assertion
Ref Expression
elab2a (𝜓𝐴 ∈ {𝑥𝜑})
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elab2a
StepHypRef Expression
1 nfv 1574 . 2 𝑥𝜓
2 elab2a.s . 2 𝐴 ∈ V
3 elab2a.1 . 2 (𝑥 = 𝐴 → (𝜓𝜑))
41, 2, 3elabf2 16104 1 (𝜓𝐴 ∈ {𝑥𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  {cab 2215  Vcvv 2799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator