Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elabg2 Unicode version

Theorem elabg2 15683
Description: One implication of elabg 2918. (Contributed by BJ, 21-Nov-2019.)
Hypothesis
Ref Expression
elabg2.1  |-  ( x  =  A  ->  ( ps  ->  ph ) )
Assertion
Ref Expression
elabg2  |-  ( A  e.  V  ->  ( ps  ->  A  e.  {
x  |  ph }
) )
Distinct variable groups:    ps, x    x, A
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem elabg2
StepHypRef Expression
1 nfcv 2347 . 2  |-  F/_ x A
2 nfv 1550 . 2  |-  F/ x ps
3 elabg2.1 . 2  |-  ( x  =  A  ->  ( ps  ->  ph ) )
41, 2, 3elabgf2 15678 1  |-  ( A  e.  V  ->  ( ps  ->  A  e.  {
x  |  ph }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   {cab 2190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator