ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleq2w Unicode version

Theorem eleq2w 2199
Description: Weaker version of eleq2 2201 (but more general than elequ2 1691) not depending on ax-ext 2119 nor df-cleq 2130. (Contributed by BJ, 29-Sep-2019.)
Assertion
Ref Expression
eleq2w  |-  ( x  =  y  ->  ( A  e.  x  <->  A  e.  y ) )

Proof of Theorem eleq2w
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elequ2 1691 . . . 4  |-  ( x  =  y  ->  (
z  e.  x  <->  z  e.  y ) )
21anbi2d 459 . . 3  |-  ( x  =  y  ->  (
( z  =  A  /\  z  e.  x
)  <->  ( z  =  A  /\  z  e.  y ) ) )
32exbidv 1797 . 2  |-  ( x  =  y  ->  ( E. z ( z  =  A  /\  z  e.  x )  <->  E. z
( z  =  A  /\  z  e.  y ) ) )
4 df-clel 2133 . 2  |-  ( A  e.  x  <->  E. z
( z  =  A  /\  z  e.  x
) )
5 df-clel 2133 . 2  |-  ( A  e.  y  <->  E. z
( z  =  A  /\  z  e.  y ) )
63, 4, 53bitr4g 222 1  |-  ( x  =  y  ->  ( A  e.  x  <->  A  e.  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331   E.wex 1468    e. wcel 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514
This theorem depends on definitions:  df-bi 116  df-clel 2133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator