| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq2w | Unicode version | ||
| Description: Weaker version of eleq2 2260 (but more general than elequ2 2172) not depending on ax-ext 2178 nor df-cleq 2189. (Contributed by BJ, 29-Sep-2019.) |
| Ref | Expression |
|---|---|
| eleq2w |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elequ2 2172 |
. . . 4
| |
| 2 | 1 | anbi2d 464 |
. . 3
|
| 3 | 2 | exbidv 1839 |
. 2
|
| 4 | df-clel 2192 |
. 2
| |
| 5 | df-clel 2192 |
. 2
| |
| 6 | 3, 4, 5 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-14 2170 |
| This theorem depends on definitions: df-bi 117 df-clel 2192 |
| This theorem is referenced by: exmidontriimlem4 7307 |
| Copyright terms: Public domain | W3C validator |