ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidontriimlem4 Unicode version

Theorem exmidontriimlem4 7220
Description: Lemma for exmidontriim 7221. The induction step for the induction on  A. (Contributed by Jim Kingdon, 10-Aug-2024.)
Hypotheses
Ref Expression
exmidontriimlem4.a  |-  ( ph  ->  A  e.  On )
exmidontriimlem4.b  |-  ( ph  ->  B  e.  On )
exmidontriimlem4.em  |-  ( ph  -> EXMID )
exmidontriimlem4.h  |-  ( ph  ->  A. z  e.  A  A. y  e.  On  ( z  e.  y  \/  z  =  y  \/  y  e.  z ) )
Assertion
Ref Expression
exmidontriimlem4  |-  ( ph  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
Distinct variable group:    y, A, z
Allowed substitution hints:    ph( y, z)    B( y, z)

Proof of Theorem exmidontriimlem4
Dummy variables  b  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2241 . . 3  |-  ( b  =  B  ->  ( A  e.  b  <->  A  e.  B ) )
2 eqeq2 2187 . . 3  |-  ( b  =  B  ->  ( A  =  b  <->  A  =  B ) )
3 eleq1 2240 . . 3  |-  ( b  =  B  ->  (
b  e.  A  <->  B  e.  A ) )
41, 2, 33orbi123d 1311 . 2  |-  ( b  =  B  ->  (
( A  e.  b  \/  A  =  b  \/  b  e.  A
)  <->  ( A  e.  B  \/  A  =  B  \/  B  e.  A ) ) )
5 eleq2w 2239 . . . . . . 7  |-  ( b  =  w  ->  ( A  e.  b  <->  A  e.  w ) )
6 eqeq2 2187 . . . . . . 7  |-  ( b  =  w  ->  ( A  =  b  <->  A  =  w ) )
7 eleq1w 2238 . . . . . . 7  |-  ( b  =  w  ->  (
b  e.  A  <->  w  e.  A ) )
85, 6, 73orbi123d 1311 . . . . . 6  |-  ( b  =  w  ->  (
( A  e.  b  \/  A  =  b  \/  b  e.  A
)  <->  ( A  e.  w  \/  A  =  w  \/  w  e.  A ) ) )
98imbi2d 230 . . . . 5  |-  ( b  =  w  ->  (
( ph  ->  ( A  e.  b  \/  A  =  b  \/  b  e.  A ) )  <->  ( ph  ->  ( A  e.  w  \/  A  =  w  \/  w  e.  A
) ) ) )
10 exmidontriimlem4.a . . . . . . . 8  |-  ( ph  ->  A  e.  On )
1110adantl 277 . . . . . . 7  |-  ( ( ( b  e.  On  /\ 
A. w  e.  b  ( ph  ->  ( A  e.  w  \/  A  =  w  \/  w  e.  A )
) )  /\  ph )  ->  A  e.  On )
12 simpll 527 . . . . . . 7  |-  ( ( ( b  e.  On  /\ 
A. w  e.  b  ( ph  ->  ( A  e.  w  \/  A  =  w  \/  w  e.  A )
) )  /\  ph )  ->  b  e.  On )
13 exmidontriimlem4.em . . . . . . . 8  |-  ( ph  -> EXMID )
1413adantl 277 . . . . . . 7  |-  ( ( ( b  e.  On  /\ 
A. w  e.  b  ( ph  ->  ( A  e.  w  \/  A  =  w  \/  w  e.  A )
) )  /\  ph )  -> EXMID )
15 exmidontriimlem4.h . . . . . . . 8  |-  ( ph  ->  A. z  e.  A  A. y  e.  On  ( z  e.  y  \/  z  =  y  \/  y  e.  z ) )
1615adantl 277 . . . . . . 7  |-  ( ( ( b  e.  On  /\ 
A. w  e.  b  ( ph  ->  ( A  e.  w  \/  A  =  w  \/  w  e.  A )
) )  /\  ph )  ->  A. z  e.  A  A. y  e.  On  ( z  e.  y  \/  z  =  y  \/  y  e.  z ) )
17 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( b  e.  On  /\  A. w  e.  b  ( ph  ->  ( A  e.  w  \/  A  =  w  \/  w  e.  A
) ) )  /\  ph )  /\  v  e.  b )  ->  ph )
18 eleq2w 2239 . . . . . . . . . . . . 13  |-  ( w  =  v  ->  ( A  e.  w  <->  A  e.  v ) )
19 eqeq2 2187 . . . . . . . . . . . . 13  |-  ( w  =  v  ->  ( A  =  w  <->  A  =  v ) )
20 eleq1w 2238 . . . . . . . . . . . . 13  |-  ( w  =  v  ->  (
w  e.  A  <->  v  e.  A ) )
2118, 19, 203orbi123d 1311 . . . . . . . . . . . 12  |-  ( w  =  v  ->  (
( A  e.  w  \/  A  =  w  \/  w  e.  A
)  <->  ( A  e.  v  \/  A  =  v  \/  v  e.  A ) ) )
2221imbi2d 230 . . . . . . . . . . 11  |-  ( w  =  v  ->  (
( ph  ->  ( A  e.  w  \/  A  =  w  \/  w  e.  A ) )  <->  ( ph  ->  ( A  e.  v  \/  A  =  v  \/  v  e.  A
) ) ) )
23 simpllr 534 . . . . . . . . . . 11  |-  ( ( ( ( b  e.  On  /\  A. w  e.  b  ( ph  ->  ( A  e.  w  \/  A  =  w  \/  w  e.  A
) ) )  /\  ph )  /\  v  e.  b )  ->  A. w  e.  b  ( ph  ->  ( A  e.  w  \/  A  =  w  \/  w  e.  A
) ) )
24 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( b  e.  On  /\  A. w  e.  b  ( ph  ->  ( A  e.  w  \/  A  =  w  \/  w  e.  A
) ) )  /\  ph )  /\  v  e.  b )  ->  v  e.  b )
2522, 23, 24rspcdva 2846 . . . . . . . . . 10  |-  ( ( ( ( b  e.  On  /\  A. w  e.  b  ( ph  ->  ( A  e.  w  \/  A  =  w  \/  w  e.  A
) ) )  /\  ph )  /\  v  e.  b )  ->  ( ph  ->  ( A  e.  v  \/  A  =  v  \/  v  e.  A ) ) )
2617, 25mpd 13 . . . . . . . . 9  |-  ( ( ( ( b  e.  On  /\  A. w  e.  b  ( ph  ->  ( A  e.  w  \/  A  =  w  \/  w  e.  A
) ) )  /\  ph )  /\  v  e.  b )  ->  ( A  e.  v  \/  A  =  v  \/  v  e.  A )
)
2726ralrimiva 2550 . . . . . . . 8  |-  ( ( ( b  e.  On  /\ 
A. w  e.  b  ( ph  ->  ( A  e.  w  \/  A  =  w  \/  w  e.  A )
) )  /\  ph )  ->  A. v  e.  b  ( A  e.  v  \/  A  =  v  \/  v  e.  A
) )
28 eleq2w 2239 . . . . . . . . . 10  |-  ( v  =  y  ->  ( A  e.  v  <->  A  e.  y ) )
29 eqeq2 2187 . . . . . . . . . 10  |-  ( v  =  y  ->  ( A  =  v  <->  A  =  y ) )
30 eleq1w 2238 . . . . . . . . . 10  |-  ( v  =  y  ->  (
v  e.  A  <->  y  e.  A ) )
3128, 29, 303orbi123d 1311 . . . . . . . . 9  |-  ( v  =  y  ->  (
( A  e.  v  \/  A  =  v  \/  v  e.  A
)  <->  ( A  e.  y  \/  A  =  y  \/  y  e.  A ) ) )
3231cbvralv 2703 . . . . . . . 8  |-  ( A. v  e.  b  ( A  e.  v  \/  A  =  v  \/  v  e.  A )  <->  A. y  e.  b  ( A  e.  y  \/  A  =  y  \/  y  e.  A ) )
3327, 32sylib 122 . . . . . . 7  |-  ( ( ( b  e.  On  /\ 
A. w  e.  b  ( ph  ->  ( A  e.  w  \/  A  =  w  \/  w  e.  A )
) )  /\  ph )  ->  A. y  e.  b  ( A  e.  y  \/  A  =  y  \/  y  e.  A
) )
3411, 12, 14, 16, 33exmidontriimlem3 7219 . . . . . 6  |-  ( ( ( b  e.  On  /\ 
A. w  e.  b  ( ph  ->  ( A  e.  w  \/  A  =  w  \/  w  e.  A )
) )  /\  ph )  ->  ( A  e.  b  \/  A  =  b  \/  b  e.  A ) )
3534exp31 364 . . . . 5  |-  ( b  e.  On  ->  ( A. w  e.  b 
( ph  ->  ( A  e.  w  \/  A  =  w  \/  w  e.  A ) )  -> 
( ph  ->  ( A  e.  b  \/  A  =  b  \/  b  e.  A ) ) ) )
369, 35tfis2 4583 . . . 4  |-  ( b  e.  On  ->  ( ph  ->  ( A  e.  b  \/  A  =  b  \/  b  e.  A ) ) )
3736impcom 125 . . 3  |-  ( (
ph  /\  b  e.  On )  ->  ( A  e.  b  \/  A  =  b  \/  b  e.  A ) )
3837ralrimiva 2550 . 2  |-  ( ph  ->  A. b  e.  On  ( A  e.  b  \/  A  =  b  \/  b  e.  A
) )
39 exmidontriimlem4.b . 2  |-  ( ph  ->  B  e.  On )
404, 38, 39rspcdva 2846 1  |-  ( ph  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ w3o 977    = wceq 1353    e. wcel 2148   A.wral 2455  EXMIDwem 4193   Oncon0 4362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-nul 4128  ax-pow 4173  ax-setind 4535
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-dif 3131  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-uni 3810  df-tr 4101  df-exmid 4194  df-iord 4365  df-on 4367
This theorem is referenced by:  exmidontriim  7221
  Copyright terms: Public domain W3C validator