| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidontriimlem4 | Unicode version | ||
| Description: Lemma for exmidontriim 7368. The induction step for the induction on
|
| Ref | Expression |
|---|---|
| exmidontriimlem4.a |
|
| exmidontriimlem4.b |
|
| exmidontriimlem4.em |
|
| exmidontriimlem4.h |
|
| Ref | Expression |
|---|---|
| exmidontriimlem4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2271 |
. . 3
| |
| 2 | eqeq2 2217 |
. . 3
| |
| 3 | eleq1 2270 |
. . 3
| |
| 4 | 1, 2, 3 | 3orbi123d 1324 |
. 2
|
| 5 | eleq2w 2269 |
. . . . . . 7
| |
| 6 | eqeq2 2217 |
. . . . . . 7
| |
| 7 | eleq1w 2268 |
. . . . . . 7
| |
| 8 | 5, 6, 7 | 3orbi123d 1324 |
. . . . . 6
|
| 9 | 8 | imbi2d 230 |
. . . . 5
|
| 10 | exmidontriimlem4.a |
. . . . . . . 8
| |
| 11 | 10 | adantl 277 |
. . . . . . 7
|
| 12 | simpll 527 |
. . . . . . 7
| |
| 13 | exmidontriimlem4.em |
. . . . . . . 8
| |
| 14 | 13 | adantl 277 |
. . . . . . 7
|
| 15 | exmidontriimlem4.h |
. . . . . . . 8
| |
| 16 | 15 | adantl 277 |
. . . . . . 7
|
| 17 | simplr 528 |
. . . . . . . . . 10
| |
| 18 | eleq2w 2269 |
. . . . . . . . . . . . 13
| |
| 19 | eqeq2 2217 |
. . . . . . . . . . . . 13
| |
| 20 | eleq1w 2268 |
. . . . . . . . . . . . 13
| |
| 21 | 18, 19, 20 | 3orbi123d 1324 |
. . . . . . . . . . . 12
|
| 22 | 21 | imbi2d 230 |
. . . . . . . . . . 11
|
| 23 | simpllr 534 |
. . . . . . . . . . 11
| |
| 24 | simpr 110 |
. . . . . . . . . . 11
| |
| 25 | 22, 23, 24 | rspcdva 2889 |
. . . . . . . . . 10
|
| 26 | 17, 25 | mpd 13 |
. . . . . . . . 9
|
| 27 | 26 | ralrimiva 2581 |
. . . . . . . 8
|
| 28 | eleq2w 2269 |
. . . . . . . . . 10
| |
| 29 | eqeq2 2217 |
. . . . . . . . . 10
| |
| 30 | eleq1w 2268 |
. . . . . . . . . 10
| |
| 31 | 28, 29, 30 | 3orbi123d 1324 |
. . . . . . . . 9
|
| 32 | 31 | cbvralv 2742 |
. . . . . . . 8
|
| 33 | 27, 32 | sylib 122 |
. . . . . . 7
|
| 34 | 11, 12, 14, 16, 33 | exmidontriimlem3 7366 |
. . . . . 6
|
| 35 | 34 | exp31 364 |
. . . . 5
|
| 36 | 9, 35 | tfis2 4651 |
. . . 4
|
| 37 | 36 | impcom 125 |
. . 3
|
| 38 | 37 | ralrimiva 2581 |
. 2
|
| 39 | exmidontriimlem4.b |
. 2
| |
| 40 | 4, 38, 39 | rspcdva 2889 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-uni 3865 df-tr 4159 df-exmid 4255 df-iord 4431 df-on 4433 |
| This theorem is referenced by: exmidontriim 7368 |
| Copyright terms: Public domain | W3C validator |