Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidontriimlem4 | Unicode version |
Description: Lemma for exmidontriim 7181. The induction step for the induction on . (Contributed by Jim Kingdon, 10-Aug-2024.) |
Ref | Expression |
---|---|
exmidontriimlem4.a | |
exmidontriimlem4.b | |
exmidontriimlem4.em | EXMID |
exmidontriimlem4.h |
Ref | Expression |
---|---|
exmidontriimlem4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2230 | . . 3 | |
2 | eqeq2 2175 | . . 3 | |
3 | eleq1 2229 | . . 3 | |
4 | 1, 2, 3 | 3orbi123d 1301 | . 2 |
5 | eleq2w 2228 | . . . . . . 7 | |
6 | eqeq2 2175 | . . . . . . 7 | |
7 | eleq1w 2227 | . . . . . . 7 | |
8 | 5, 6, 7 | 3orbi123d 1301 | . . . . . 6 |
9 | 8 | imbi2d 229 | . . . . 5 |
10 | exmidontriimlem4.a | . . . . . . . 8 | |
11 | 10 | adantl 275 | . . . . . . 7 |
12 | simpll 519 | . . . . . . 7 | |
13 | exmidontriimlem4.em | . . . . . . . 8 EXMID | |
14 | 13 | adantl 275 | . . . . . . 7 EXMID |
15 | exmidontriimlem4.h | . . . . . . . 8 | |
16 | 15 | adantl 275 | . . . . . . 7 |
17 | simplr 520 | . . . . . . . . . 10 | |
18 | eleq2w 2228 | . . . . . . . . . . . . 13 | |
19 | eqeq2 2175 | . . . . . . . . . . . . 13 | |
20 | eleq1w 2227 | . . . . . . . . . . . . 13 | |
21 | 18, 19, 20 | 3orbi123d 1301 | . . . . . . . . . . . 12 |
22 | 21 | imbi2d 229 | . . . . . . . . . . 11 |
23 | simpllr 524 | . . . . . . . . . . 11 | |
24 | simpr 109 | . . . . . . . . . . 11 | |
25 | 22, 23, 24 | rspcdva 2835 | . . . . . . . . . 10 |
26 | 17, 25 | mpd 13 | . . . . . . . . 9 |
27 | 26 | ralrimiva 2539 | . . . . . . . 8 |
28 | eleq2w 2228 | . . . . . . . . . 10 | |
29 | eqeq2 2175 | . . . . . . . . . 10 | |
30 | eleq1w 2227 | . . . . . . . . . 10 | |
31 | 28, 29, 30 | 3orbi123d 1301 | . . . . . . . . 9 |
32 | 31 | cbvralv 2692 | . . . . . . . 8 |
33 | 27, 32 | sylib 121 | . . . . . . 7 |
34 | 11, 12, 14, 16, 33 | exmidontriimlem3 7179 | . . . . . 6 |
35 | 34 | exp31 362 | . . . . 5 |
36 | 9, 35 | tfis2 4562 | . . . 4 |
37 | 36 | impcom 124 | . . 3 |
38 | 37 | ralrimiva 2539 | . 2 |
39 | exmidontriimlem4.b | . 2 | |
40 | 4, 38, 39 | rspcdva 2835 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3o 967 wceq 1343 wcel 2136 wral 2444 EXMIDwem 4173 con0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-uni 3790 df-tr 4081 df-exmid 4174 df-iord 4344 df-on 4346 |
This theorem is referenced by: exmidontriim 7181 |
Copyright terms: Public domain | W3C validator |