ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleq2w GIF version

Theorem eleq2w 2258
Description: Weaker version of eleq2 2260 (but more general than elequ2 2172) not depending on ax-ext 2178 nor df-cleq 2189. (Contributed by BJ, 29-Sep-2019.)
Assertion
Ref Expression
eleq2w (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))

Proof of Theorem eleq2w
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elequ2 2172 . . . 4 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
21anbi2d 464 . . 3 (𝑥 = 𝑦 → ((𝑧 = 𝐴𝑧𝑥) ↔ (𝑧 = 𝐴𝑧𝑦)))
32exbidv 1839 . 2 (𝑥 = 𝑦 → (∃𝑧(𝑧 = 𝐴𝑧𝑥) ↔ ∃𝑧(𝑧 = 𝐴𝑧𝑦)))
4 df-clel 2192 . 2 (𝐴𝑥 ↔ ∃𝑧(𝑧 = 𝐴𝑧𝑥))
5 df-clel 2192 . 2 (𝐴𝑦 ↔ ∃𝑧(𝑧 = 𝐴𝑧𝑦))
63, 4, 53bitr4g 223 1 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1506  wcel 2167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-14 2170
This theorem depends on definitions:  df-bi 117  df-clel 2192
This theorem is referenced by:  exmidontriimlem4  7291
  Copyright terms: Public domain W3C validator