ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elndif Unicode version

Theorem elndif 3245
Description: A set does not belong to a class excluding it. (Contributed by NM, 27-Jun-1994.)
Assertion
Ref Expression
elndif  |-  ( A  e.  B  ->  -.  A  e.  ( C  \  B ) )

Proof of Theorem elndif
StepHypRef Expression
1 eldifn 3244 . 2  |-  ( A  e.  ( C  \  B )  ->  -.  A  e.  B )
21con2i 617 1  |-  ( A  e.  B  ->  -.  A  e.  ( C  \  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2136    \ cdif 3112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-v 2727  df-dif 3117
This theorem is referenced by:  ddifnel  3252  inssdif  3357
  Copyright terms: Public domain W3C validator