Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elndif | Unicode version |
Description: A set does not belong to a class excluding it. (Contributed by NM, 27-Jun-1994.) |
Ref | Expression |
---|---|
elndif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifn 3251 | . 2 | |
2 | 1 | con2i 623 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wcel 2142 cdif 3119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 610 ax-in2 611 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-ext 2153 |
This theorem depends on definitions: df-bi 116 df-tru 1352 df-nf 1455 df-sb 1757 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-v 2733 df-dif 3124 |
This theorem is referenced by: ddifnel 3259 inssdif 3364 |
Copyright terms: Public domain | W3C validator |