| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifn | Unicode version | ||
| Description: Implication of membership in a class difference. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| eldifn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3166 |
. 2
| |
| 2 | 1 | simprbi 275 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 |
| This theorem is referenced by: elndif 3288 unssin 3403 inssun 3404 noel 3455 disjel 3506 undifexmid 4227 exmidundif 4240 exmidundifim 4241 exmid1stab 4242 phpm 6935 undifdcss 6993 fsum3cvg 11560 summodclem2a 11563 fisumss 11574 isumss2 11575 binomlem 11665 fproddccvg 11754 prodmodclem2a 11758 fprodssdc 11772 fprodsplitdc 11778 ply1termlem 15062 plyaddlem1 15067 plymullem1 15068 plycoeid3 15077 dvply1 15085 |
| Copyright terms: Public domain | W3C validator |