ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifn Unicode version

Theorem eldifn 3259
Description: Implication of membership in a class difference. (Contributed by NM, 3-May-1994.)
Assertion
Ref Expression
eldifn  |-  ( A  e.  ( B  \  C )  ->  -.  A  e.  C )

Proof of Theorem eldifn
StepHypRef Expression
1 eldif 3139 . 2  |-  ( A  e.  ( B  \  C )  <->  ( A  e.  B  /\  -.  A  e.  C ) )
21simprbi 275 1  |-  ( A  e.  ( B  \  C )  ->  -.  A  e.  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2148    \ cdif 3127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-dif 3132
This theorem is referenced by:  elndif  3260  unssin  3375  inssun  3376  noel  3427  disjel  3478  undifexmid  4194  exmidundif  4207  exmidundifim  4208  exmid1stab  4209  phpm  6865  undifdcss  6922  fsum3cvg  11386  summodclem2a  11389  fisumss  11400  isumss2  11401  binomlem  11491  fproddccvg  11580  prodmodclem2a  11584  fprodssdc  11598  fprodsplitdc  11604
  Copyright terms: Public domain W3C validator