![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldifn | Unicode version |
Description: Implication of membership in a class difference. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
eldifn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3163 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simprbi 275 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3156 |
This theorem is referenced by: elndif 3284 unssin 3399 inssun 3400 noel 3451 disjel 3502 undifexmid 4223 exmidundif 4236 exmidundifim 4237 exmid1stab 4238 phpm 6923 undifdcss 6981 fsum3cvg 11524 summodclem2a 11527 fisumss 11538 isumss2 11539 binomlem 11629 fproddccvg 11718 prodmodclem2a 11722 fprodssdc 11736 fprodsplitdc 11742 ply1termlem 14921 plyaddlem1 14926 plymullem1 14927 dvply1 14943 |
Copyright terms: Public domain | W3C validator |