| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifn | Unicode version | ||
| Description: Implication of membership in a class difference. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| eldifn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3175 |
. 2
| |
| 2 | 1 | simprbi 275 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 |
| This theorem is referenced by: elndif 3297 unssin 3412 inssun 3413 noel 3464 disjel 3515 undifexmid 4238 exmidundif 4251 exmidundifim 4252 exmid1stab 4253 phpm 6964 undifdcss 7022 fsum3cvg 11722 summodclem2a 11725 fisumss 11736 isumss2 11737 binomlem 11827 fproddccvg 11916 prodmodclem2a 11920 fprodssdc 11934 fprodsplitdc 11940 ply1termlem 15247 plyaddlem1 15252 plymullem1 15253 plycoeid3 15262 dvply1 15270 |
| Copyright terms: Public domain | W3C validator |