ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifn Unicode version

Theorem eldifn 3327
Description: Implication of membership in a class difference. (Contributed by NM, 3-May-1994.)
Assertion
Ref Expression
eldifn  |-  ( A  e.  ( B  \  C )  ->  -.  A  e.  C )

Proof of Theorem eldifn
StepHypRef Expression
1 eldif 3206 . 2  |-  ( A  e.  ( B  \  C )  <->  ( A  e.  B  /\  -.  A  e.  C ) )
21simprbi 275 1  |-  ( A  e.  ( B  \  C )  ->  -.  A  e.  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2200    \ cdif 3194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199
This theorem is referenced by:  elndif  3328  unssin  3443  inssun  3444  noel  3495  disjel  3546  undifexmid  4277  exmidundif  4290  exmidundifim  4291  exmid1stab  4292  phpm  7027  undifdcss  7085  fsum3cvg  11889  summodclem2a  11892  fisumss  11903  isumss2  11904  binomlem  11994  fproddccvg  12083  prodmodclem2a  12087  fprodssdc  12101  fprodsplitdc  12107  ply1termlem  15416  plyaddlem1  15421  plymullem1  15422  plycoeid3  15431  dvply1  15439
  Copyright terms: Public domain W3C validator