![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldifn | Unicode version |
Description: Implication of membership in a class difference. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
eldifn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3162 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simprbi 275 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 |
This theorem is referenced by: elndif 3283 unssin 3398 inssun 3399 noel 3450 disjel 3501 undifexmid 4222 exmidundif 4235 exmidundifim 4236 exmid1stab 4237 phpm 6921 undifdcss 6979 fsum3cvg 11521 summodclem2a 11524 fisumss 11535 isumss2 11536 binomlem 11626 fproddccvg 11715 prodmodclem2a 11719 fprodssdc 11733 fprodsplitdc 11739 ply1termlem 14888 plyaddlem1 14893 plymullem1 14894 |
Copyright terms: Public domain | W3C validator |