ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elndif GIF version

Theorem elndif 3328
Description: A set does not belong to a class excluding it. (Contributed by NM, 27-Jun-1994.)
Assertion
Ref Expression
elndif (𝐴𝐵 → ¬ 𝐴 ∈ (𝐶𝐵))

Proof of Theorem elndif
StepHypRef Expression
1 eldifn 3327 . 2 (𝐴 ∈ (𝐶𝐵) → ¬ 𝐴𝐵)
21con2i 630 1 (𝐴𝐵 → ¬ 𝐴 ∈ (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2200  cdif 3194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199
This theorem is referenced by:  ddifnel  3335  inssdif  3440
  Copyright terms: Public domain W3C validator