ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrint2 Unicode version

Theorem elrint2 3865
Description: Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
elrint2  |-  ( X  e.  A  ->  ( X  e.  ( A  i^i  |^| B )  <->  A. y  e.  B  X  e.  y ) )
Distinct variable groups:    y, B    y, X
Allowed substitution hint:    A( y)

Proof of Theorem elrint2
StepHypRef Expression
1 elrint 3864 . 2  |-  ( X  e.  ( A  i^i  |^| B )  <->  ( X  e.  A  /\  A. y  e.  B  X  e.  y ) )
21baib 909 1  |-  ( X  e.  A  ->  ( X  e.  ( A  i^i  |^| B )  <->  A. y  e.  B  X  e.  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 2136   A.wral 2444    i^i cin 3115   |^|cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-in 3122  df-int 3825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator