ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrint Unicode version

Theorem elrint 3963
Description: Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
elrint  |-  ( X  e.  ( A  i^i  |^| B )  <->  ( X  e.  A  /\  A. y  e.  B  X  e.  y ) )
Distinct variable groups:    y, B    y, X
Allowed substitution hint:    A( y)

Proof of Theorem elrint
StepHypRef Expression
1 elin 3387 . 2  |-  ( X  e.  ( A  i^i  |^| B )  <->  ( X  e.  A  /\  X  e. 
|^| B ) )
2 elintg 3931 . . 3  |-  ( X  e.  A  ->  ( X  e.  |^| B  <->  A. y  e.  B  X  e.  y ) )
32pm5.32i 454 . 2  |-  ( ( X  e.  A  /\  X  e.  |^| B )  <-> 
( X  e.  A  /\  A. y  e.  B  X  e.  y )
)
41, 3bitri 184 1  |-  ( X  e.  ( A  i^i  |^| B )  <->  ( X  e.  A  /\  A. y  e.  B  X  e.  y ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2200   A.wral 2508    i^i cin 3196   |^|cint 3923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-int 3924
This theorem is referenced by:  elrint2  3964
  Copyright terms: Public domain W3C validator