ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrint Unicode version

Theorem elrint 3910
Description: Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
elrint  |-  ( X  e.  ( A  i^i  |^| B )  <->  ( X  e.  A  /\  A. y  e.  B  X  e.  y ) )
Distinct variable groups:    y, B    y, X
Allowed substitution hint:    A( y)

Proof of Theorem elrint
StepHypRef Expression
1 elin 3342 . 2  |-  ( X  e.  ( A  i^i  |^| B )  <->  ( X  e.  A  /\  X  e. 
|^| B ) )
2 elintg 3878 . . 3  |-  ( X  e.  A  ->  ( X  e.  |^| B  <->  A. y  e.  B  X  e.  y ) )
32pm5.32i 454 . 2  |-  ( ( X  e.  A  /\  X  e.  |^| B )  <-> 
( X  e.  A  /\  A. y  e.  B  X  e.  y )
)
41, 3bitri 184 1  |-  ( X  e.  ( A  i^i  |^| B )  <->  ( X  e.  A  /\  A. y  e.  B  X  e.  y ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2164   A.wral 2472    i^i cin 3152   |^|cint 3870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-in 3159  df-int 3871
This theorem is referenced by:  elrint2  3911
  Copyright terms: Public domain W3C validator