ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrint Unicode version

Theorem elrint 3871
Description: Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
elrint  |-  ( X  e.  ( A  i^i  |^| B )  <->  ( X  e.  A  /\  A. y  e.  B  X  e.  y ) )
Distinct variable groups:    y, B    y, X
Allowed substitution hint:    A( y)

Proof of Theorem elrint
StepHypRef Expression
1 elin 3310 . 2  |-  ( X  e.  ( A  i^i  |^| B )  <->  ( X  e.  A  /\  X  e. 
|^| B ) )
2 elintg 3839 . . 3  |-  ( X  e.  A  ->  ( X  e.  |^| B  <->  A. y  e.  B  X  e.  y ) )
32pm5.32i 451 . 2  |-  ( ( X  e.  A  /\  X  e.  |^| B )  <-> 
( X  e.  A  /\  A. y  e.  B  X  e.  y )
)
41, 3bitri 183 1  |-  ( X  e.  ( A  i^i  |^| B )  <->  ( X  e.  A  /\  A. y  e.  B  X  e.  y ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    e. wcel 2141   A.wral 2448    i^i cin 3120   |^|cint 3831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-in 3127  df-int 3832
This theorem is referenced by:  elrint2  3872
  Copyright terms: Public domain W3C validator