ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrint2 GIF version

Theorem elrint2 3865
Description: Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
elrint2 (𝑋𝐴 → (𝑋 ∈ (𝐴 𝐵) ↔ ∀𝑦𝐵 𝑋𝑦))
Distinct variable groups:   𝑦,𝐵   𝑦,𝑋
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem elrint2
StepHypRef Expression
1 elrint 3864 . 2 (𝑋 ∈ (𝐴 𝐵) ↔ (𝑋𝐴 ∧ ∀𝑦𝐵 𝑋𝑦))
21baib 909 1 (𝑋𝐴 → (𝑋 ∈ (𝐴 𝐵) ↔ ∀𝑦𝐵 𝑋𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 2136  wral 2444  cin 3115   cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-in 3122  df-int 3825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator