ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltp Unicode version

Theorem eltp 3680
Description: A member of an unordered triple of classes is one of them. Special case of Exercise 1 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Apr-1994.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
eltp.1  |-  A  e. 
_V
Assertion
Ref Expression
eltp  |-  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D )
)

Proof of Theorem eltp
StepHypRef Expression
1 eltp.1 . 2  |-  A  e. 
_V
2 eltpg 3677 . 2  |-  ( A  e.  _V  ->  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D )
) )
31, 2ax-mp 5 1  |-  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ w3o 979    = wceq 1372    e. wcel 2175   _Vcvv 2771   {ctp 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3or 981  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-tp 3640
This theorem is referenced by:  dftp2  3681  tpid1  3743  tpid2  3745  tpid3  3748
  Copyright terms: Public domain W3C validator