ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpid3 Unicode version

Theorem tpid3 3749
Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypothesis
Ref Expression
tpid3.1  |-  C  e. 
_V
Assertion
Ref Expression
tpid3  |-  C  e. 
{ A ,  B ,  C }

Proof of Theorem tpid3
StepHypRef Expression
1 eqid 2205 . . 3  |-  C  =  C
213mix3i 1174 . 2  |-  ( C  =  A  \/  C  =  B  \/  C  =  C )
3 tpid3.1 . . 3  |-  C  e. 
_V
43eltp 3681 . 2  |-  ( C  e.  { A ,  B ,  C }  <->  ( C  =  A  \/  C  =  B  \/  C  =  C )
)
52, 4mpbir 146 1  |-  C  e. 
{ A ,  B ,  C }
Colors of variables: wff set class
Syntax hints:    \/ w3o 980    = wceq 1373    e. wcel 2176   _Vcvv 2772   {ctp 3635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3or 982  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-tp 3641
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator