ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftp2 Unicode version

Theorem dftp2 3715
Description: Alternate definition of unordered triple of classes. Special case of Definition 5.3 of [TakeutiZaring] p. 16. (Contributed by NM, 8-Apr-1994.)
Assertion
Ref Expression
dftp2  |-  { A ,  B ,  C }  =  { x  |  ( x  =  A  \/  x  =  B  \/  x  =  C ) }
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem dftp2
StepHypRef Expression
1 vex 2802 . . 3  |-  x  e. 
_V
21eltp 3714 . 2  |-  ( x  e.  { A ,  B ,  C }  <->  ( x  =  A  \/  x  =  B  \/  x  =  C )
)
32abbi2i 2344 1  |-  { A ,  B ,  C }  =  { x  |  ( x  =  A  \/  x  =  B  \/  x  =  C ) }
Colors of variables: wff set class
Syntax hints:    \/ w3o 1001    = wceq 1395   {cab 2215   {ctp 3668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-tp 3674
This theorem is referenced by:  tprot  3759  tpid3g  3781
  Copyright terms: Public domain W3C validator