ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftp2 Unicode version

Theorem dftp2 3642
Description: Alternate definition of unordered triple of classes. Special case of Definition 5.3 of [TakeutiZaring] p. 16. (Contributed by NM, 8-Apr-1994.)
Assertion
Ref Expression
dftp2  |-  { A ,  B ,  C }  =  { x  |  ( x  =  A  \/  x  =  B  \/  x  =  C ) }
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem dftp2
StepHypRef Expression
1 vex 2741 . . 3  |-  x  e. 
_V
21eltp 3641 . 2  |-  ( x  e.  { A ,  B ,  C }  <->  ( x  =  A  \/  x  =  B  \/  x  =  C )
)
32abbi2i 2292 1  |-  { A ,  B ,  C }  =  { x  |  ( x  =  A  \/  x  =  B  \/  x  =  C ) }
Colors of variables: wff set class
Syntax hints:    \/ w3o 977    = wceq 1353   {cab 2163   {ctp 3595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3or 979  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-un 3134  df-sn 3599  df-pr 3600  df-tp 3601
This theorem is referenced by:  tprot  3686  tpid3g  3708
  Copyright terms: Public domain W3C validator