ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltpg Unicode version

Theorem eltpg 3621
Description: Members of an unordered triple of classes. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
eltpg  |-  ( A  e.  V  ->  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D )
) )

Proof of Theorem eltpg
StepHypRef Expression
1 elprg 3596 . . 3  |-  ( A  e.  V  ->  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C ) ) )
2 elsng 3591 . . 3  |-  ( A  e.  V  ->  ( A  e.  { D } 
<->  A  =  D ) )
31, 2orbi12d 783 . 2  |-  ( A  e.  V  ->  (
( A  e.  { B ,  C }  \/  A  e.  { D } )  <->  ( ( A  =  B  \/  A  =  C )  \/  A  =  D
) ) )
4 df-tp 3584 . . . 4  |-  { B ,  C ,  D }  =  ( { B ,  C }  u.  { D } )
54eleq2i 2233 . . 3  |-  ( A  e.  { B ,  C ,  D }  <->  A  e.  ( { B ,  C }  u.  { D } ) )
6 elun 3263 . . 3  |-  ( A  e.  ( { B ,  C }  u.  { D } )  <->  ( A  e.  { B ,  C }  \/  A  e.  { D } ) )
75, 6bitri 183 . 2  |-  ( A  e.  { B ,  C ,  D }  <->  ( A  e.  { B ,  C }  \/  A  e.  { D } ) )
8 df-3or 969 . 2  |-  ( ( A  =  B  \/  A  =  C  \/  A  =  D )  <->  ( ( A  =  B  \/  A  =  C )  \/  A  =  D ) )
93, 7, 83bitr4g 222 1  |-  ( A  e.  V  ->  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    \/ wo 698    \/ w3o 967    = wceq 1343    e. wcel 2136    u. cun 3114   {csn 3576   {cpr 3577   {ctp 3578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3or 969  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-tp 3584
This theorem is referenced by:  eldiftp  3622  eltpi  3623  eltp  3624  tpid1g  3688  tpid2g  3690  zabsle1  13540
  Copyright terms: Public domain W3C validator