| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eltpg | Unicode version | ||
| Description: Members of an unordered triple of classes. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| eltpg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprg 3652 |
. . 3
| |
| 2 | elsng 3647 |
. . 3
| |
| 3 | 1, 2 | orbi12d 794 |
. 2
|
| 4 | df-tp 3640 |
. . . 4
| |
| 5 | 4 | eleq2i 2271 |
. . 3
|
| 6 | elun 3313 |
. . 3
| |
| 7 | 5, 6 | bitri 184 |
. 2
|
| 8 | df-3or 981 |
. 2
| |
| 9 | 3, 7, 8 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-tp 3640 |
| This theorem is referenced by: eldiftp 3678 eltpi 3679 eltp 3680 tpid1g 3744 tpid2g 3746 zabsle1 15394 gausslemma2dlem0i 15452 2lgsoddprm 15508 |
| Copyright terms: Public domain | W3C validator |