Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltpg Unicode version

Theorem eltpg 3576
 Description: Members of an unordered triple of classes. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
eltpg

Proof of Theorem eltpg
StepHypRef Expression
1 elprg 3552 . . 3
2 elsng 3547 . . 3
31, 2orbi12d 783 . 2
4 df-tp 3540 . . . 4
54eleq2i 2207 . . 3
6 elun 3222 . . 3
75, 6bitri 183 . 2
8 df-3or 964 . 2
93, 7, 83bitr4g 222 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 104   wo 698   w3o 962   wceq 1332   wcel 1481   cun 3074  csn 3532  cpr 3533  ctp 3534 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-3or 964  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691  df-un 3080  df-sn 3538  df-pr 3539  df-tp 3540 This theorem is referenced by:  eldiftp  3577  eltpi  3578  eltp  3579  tpid1g  3643  tpid2g  3645
 Copyright terms: Public domain W3C validator