| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eltpg | Unicode version | ||
| Description: Members of an unordered triple of classes. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| eltpg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprg 3658 |
. . 3
| |
| 2 | elsng 3653 |
. . 3
| |
| 3 | 1, 2 | orbi12d 795 |
. 2
|
| 4 | df-tp 3646 |
. . . 4
| |
| 5 | 4 | eleq2i 2273 |
. . 3
|
| 6 | elun 3318 |
. . 3
| |
| 7 | 5, 6 | bitri 184 |
. 2
|
| 8 | df-3or 982 |
. 2
| |
| 9 | 3, 7, 8 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-tp 3646 |
| This theorem is referenced by: eldiftp 3684 eltpi 3685 eltp 3686 tpid1g 3750 tpid2g 3752 zabsle1 15551 gausslemma2dlem0i 15609 2lgsoddprm 15665 |
| Copyright terms: Public domain | W3C validator |