ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltpg Unicode version

Theorem eltpg 3569
Description: Members of an unordered triple of classes. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
eltpg  |-  ( A  e.  V  ->  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D )
) )

Proof of Theorem eltpg
StepHypRef Expression
1 elprg 3547 . . 3  |-  ( A  e.  V  ->  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C ) ) )
2 elsng 3542 . . 3  |-  ( A  e.  V  ->  ( A  e.  { D } 
<->  A  =  D ) )
31, 2orbi12d 782 . 2  |-  ( A  e.  V  ->  (
( A  e.  { B ,  C }  \/  A  e.  { D } )  <->  ( ( A  =  B  \/  A  =  C )  \/  A  =  D
) ) )
4 df-tp 3535 . . . 4  |-  { B ,  C ,  D }  =  ( { B ,  C }  u.  { D } )
54eleq2i 2206 . . 3  |-  ( A  e.  { B ,  C ,  D }  <->  A  e.  ( { B ,  C }  u.  { D } ) )
6 elun 3217 . . 3  |-  ( A  e.  ( { B ,  C }  u.  { D } )  <->  ( A  e.  { B ,  C }  \/  A  e.  { D } ) )
75, 6bitri 183 . 2  |-  ( A  e.  { B ,  C ,  D }  <->  ( A  e.  { B ,  C }  \/  A  e.  { D } ) )
8 df-3or 963 . 2  |-  ( ( A  =  B  \/  A  =  C  \/  A  =  D )  <->  ( ( A  =  B  \/  A  =  C )  \/  A  =  D ) )
93, 7, 83bitr4g 222 1  |-  ( A  e.  V  ->  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    \/ wo 697    \/ w3o 961    = wceq 1331    e. wcel 1480    u. cun 3069   {csn 3527   {cpr 3528   {ctp 3529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3or 963  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534  df-tp 3535
This theorem is referenced by:  eltpi  3570  eltp  3571  tpid1g  3635  tpid2g  3637
  Copyright terms: Public domain W3C validator