ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltpg Unicode version

Theorem eltpg 3711
Description: Members of an unordered triple of classes. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
eltpg  |-  ( A  e.  V  ->  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D )
) )

Proof of Theorem eltpg
StepHypRef Expression
1 elprg 3686 . . 3  |-  ( A  e.  V  ->  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C ) ) )
2 elsng 3681 . . 3  |-  ( A  e.  V  ->  ( A  e.  { D } 
<->  A  =  D ) )
31, 2orbi12d 798 . 2  |-  ( A  e.  V  ->  (
( A  e.  { B ,  C }  \/  A  e.  { D } )  <->  ( ( A  =  B  \/  A  =  C )  \/  A  =  D
) ) )
4 df-tp 3674 . . . 4  |-  { B ,  C ,  D }  =  ( { B ,  C }  u.  { D } )
54eleq2i 2296 . . 3  |-  ( A  e.  { B ,  C ,  D }  <->  A  e.  ( { B ,  C }  u.  { D } ) )
6 elun 3345 . . 3  |-  ( A  e.  ( { B ,  C }  u.  { D } )  <->  ( A  e.  { B ,  C }  \/  A  e.  { D } ) )
75, 6bitri 184 . 2  |-  ( A  e.  { B ,  C ,  D }  <->  ( A  e.  { B ,  C }  \/  A  e.  { D } ) )
8 df-3or 1003 . 2  |-  ( ( A  =  B  \/  A  =  C  \/  A  =  D )  <->  ( ( A  =  B  \/  A  =  C )  \/  A  =  D ) )
93, 7, 83bitr4g 223 1  |-  ( A  e.  V  ->  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 713    \/ w3o 1001    = wceq 1395    e. wcel 2200    u. cun 3195   {csn 3666   {cpr 3667   {ctp 3668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-tp 3674
This theorem is referenced by:  eldiftp  3712  eltpi  3713  eltp  3714  tpid1g  3778  tpid2g  3780  zabsle1  15672  gausslemma2dlem0i  15730  2lgsoddprm  15786
  Copyright terms: Public domain W3C validator