ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltpi Unicode version

Theorem eltpi 3622
Description: A member of an unordered triple of classes is one of them. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
eltpi  |-  ( A  e.  { B ,  C ,  D }  ->  ( A  =  B  \/  A  =  C  \/  A  =  D ) )

Proof of Theorem eltpi
StepHypRef Expression
1 eltpg 3620 . 2  |-  ( A  e.  { B ,  C ,  D }  ->  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D ) ) )
21ibi 175 1  |-  ( A  e.  { B ,  C ,  D }  ->  ( A  =  B  \/  A  =  C  \/  A  =  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 967    = wceq 1343    e. wcel 2136   {ctp 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3or 969  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-v 2727  df-un 3119  df-sn 3581  df-pr 3582  df-tp 3583
This theorem is referenced by:  prm23lt5  12191  zabsle1  13500
  Copyright terms: Public domain W3C validator