ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltpi Unicode version

Theorem eltpi 3679
Description: A member of an unordered triple of classes is one of them. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
eltpi  |-  ( A  e.  { B ,  C ,  D }  ->  ( A  =  B  \/  A  =  C  \/  A  =  D ) )

Proof of Theorem eltpi
StepHypRef Expression
1 eltpg 3677 . 2  |-  ( A  e.  { B ,  C ,  D }  ->  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D ) ) )
21ibi 176 1  |-  ( A  e.  { B ,  C ,  D }  ->  ( A  =  B  \/  A  =  C  \/  A  =  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 979    = wceq 1372    e. wcel 2175   {ctp 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3or 981  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-tp 3640
This theorem is referenced by:  prm23lt5  12505  perfectlem2  15390  zabsle1  15394
  Copyright terms: Public domain W3C validator