Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > pw1nct | Unicode version |
Description: A condition which ensures that the powerset of a singleton is not countable. The antecedent here can be referred to as the uniformity principle. Based on Mastodon posts by Andrej Bauer and Rahul Chhabra. (Contributed by Jim Kingdon, 29-May-2024.) |
Ref | Expression |
---|---|
pw1nct | ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . . . . . . . 8 | |
2 | nfv 1521 | . . . . . . . . 9 | |
3 | nfre1 2513 | . . . . . . . . 9 | |
4 | 2, 3 | nfim 1565 | . . . . . . . 8 |
5 | 1, 4 | nfim 1565 | . . . . . . 7 |
6 | 5 | nfal 1569 | . . . . . 6 |
7 | nfv 1521 | . . . . . 6 | |
8 | 6, 7 | nfan 1558 | . . . . 5 |
9 | breq1 3992 | . . . . . . . . 9 | |
10 | simpr 109 | . . . . . . . . 9 | |
11 | 0elpw 4150 | . . . . . . . . . 10 | |
12 | 11 | a1i 9 | . . . . . . . . 9 |
13 | 9, 10, 12 | rspcdva 2839 | . . . . . . . 8 |
14 | 0ex 4116 | . . . . . . . . 9 | |
15 | vex 2733 | . . . . . . . . 9 | |
16 | 14, 15 | brcnv 4794 | . . . . . . . 8 |
17 | 13, 16 | sylib 121 | . . . . . . 7 |
18 | fofn 5422 | . . . . . . . . 9 | |
19 | 18 | ad3antlr 490 | . . . . . . . 8 |
20 | simplr 525 | . . . . . . . 8 | |
21 | fnbrfvb 5537 | . . . . . . . 8 | |
22 | 19, 20, 21 | syl2anc 409 | . . . . . . 7 |
23 | 17, 22 | mpbird 166 | . . . . . 6 |
24 | breq1 3992 | . . . . . . . . . 10 | |
25 | 1oex 6403 | . . . . . . . . . . . 12 | |
26 | 25 | pwid 3581 | . . . . . . . . . . 11 |
27 | 26 | a1i 9 | . . . . . . . . . 10 |
28 | 24, 10, 27 | rspcdva 2839 | . . . . . . . . 9 |
29 | 25, 15 | brcnv 4794 | . . . . . . . . 9 |
30 | 28, 29 | sylib 121 | . . . . . . . 8 |
31 | fnbrfvb 5537 | . . . . . . . . 9 | |
32 | 19, 20, 31 | syl2anc 409 | . . . . . . . 8 |
33 | 30, 32 | mpbird 166 | . . . . . . 7 |
34 | 1n0 6411 | . . . . . . . 8 | |
35 | 34 | neii 2342 | . . . . . . 7 |
36 | eqeq1 2177 | . . . . . . . . 9 | |
37 | 36 | biimpd 143 | . . . . . . . 8 |
38 | 37 | con3dimp 630 | . . . . . . 7 |
39 | 33, 35, 38 | sylancl 411 | . . . . . 6 |
40 | 23, 39 | pm2.21fal 1368 | . . . . 5 |
41 | fof 5420 | . . . . . . . 8 | |
42 | fssxp 5365 | . . . . . . . . . 10 | |
43 | cnvss 4784 | . . . . . . . . . 10 | |
44 | 42, 43 | syl 14 | . . . . . . . . 9 |
45 | cnvxp 5029 | . . . . . . . . 9 | |
46 | 44, 45 | sseqtrdi 3195 | . . . . . . . 8 |
47 | 41, 46 | syl 14 | . . . . . . 7 |
48 | 47 | adantl 275 | . . . . . 6 |
49 | foelrn 5732 | . . . . . . . . 9 | |
50 | 18 | ad2antrr 485 | . . . . . . . . . . 11 |
51 | simpr 109 | . . . . . . . . . . 11 | |
52 | eqcom 2172 | . . . . . . . . . . . 12 | |
53 | fnbrfvb 5537 | . . . . . . . . . . . . 13 | |
54 | brcnvg 4792 | . . . . . . . . . . . . . . 15 | |
55 | 54 | elvd 2735 | . . . . . . . . . . . . . 14 |
56 | 55 | elv 2734 | . . . . . . . . . . . . 13 |
57 | 53, 56 | bitr4di 197 | . . . . . . . . . . . 12 |
58 | 52, 57 | bitr3id 193 | . . . . . . . . . . 11 |
59 | 50, 51, 58 | syl2anc 409 | . . . . . . . . . 10 |
60 | 59 | rexbidva 2467 | . . . . . . . . 9 |
61 | 49, 60 | mpbid 146 | . . . . . . . 8 |
62 | 61 | ralrimiva 2543 | . . . . . . 7 |
63 | 62 | adantl 275 | . . . . . 6 |
64 | cnvexg 5148 | . . . . . . . 8 | |
65 | 64 | elv 2734 | . . . . . . 7 |
66 | simpl 108 | . . . . . . 7 | |
67 | sseq1 3170 | . . . . . . . . 9 | |
68 | breq 3991 | . . . . . . . . . . . 12 | |
69 | 68 | rexbidv 2471 | . . . . . . . . . . 11 |
70 | 69 | ralbidv 2470 | . . . . . . . . . 10 |
71 | breq 3991 | . . . . . . . . . . . 12 | |
72 | 71 | ralbidv 2470 | . . . . . . . . . . 11 |
73 | 72 | rexbidv 2471 | . . . . . . . . . 10 |
74 | 70, 73 | imbi12d 233 | . . . . . . . . 9 |
75 | 67, 74 | imbi12d 233 | . . . . . . . 8 |
76 | 75 | spcgv 2817 | . . . . . . 7 |
77 | 65, 66, 76 | mpsyl 65 | . . . . . 6 |
78 | 48, 63, 77 | mp2d 47 | . . . . 5 |
79 | 8, 40, 78 | r19.29af 2611 | . . . 4 |
80 | 79 | inegd 1367 | . . 3 |
81 | 80 | nexdv 1929 | . 2 |
82 | elex2 2746 | . . 3 | |
83 | ctm 7086 | . . 3 ⊔ | |
84 | 11, 82, 83 | mp2b 8 | . 2 ⊔ |
85 | 81, 84 | sylnibr 672 | 1 ⊔ |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wal 1346 wceq 1348 wfal 1353 wex 1485 wcel 2141 wral 2448 wrex 2449 cvv 2730 wss 3121 c0 3414 cpw 3566 class class class wbr 3989 com 4574 cxp 4609 ccnv 4610 wfn 5193 wf 5194 wfo 5196 cfv 5198 c1o 6388 ⊔ cdju 7014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-dju 7015 df-inl 7024 df-inr 7025 df-case 7061 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |