Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > pw1nct | Unicode version |
Description: A condition which ensures that the powerset of a singleton is not countable. The antecedent here can be referred to as the uniformity principle. Based on Mastodon posts by Andrej Bauer and Rahul Chhabra. (Contributed by Jim Kingdon, 29-May-2024.) |
Ref | Expression |
---|---|
pw1nct | ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . . . . . . . 8 | |
2 | nfv 1516 | . . . . . . . . 9 | |
3 | nfre1 2509 | . . . . . . . . 9 | |
4 | 2, 3 | nfim 1560 | . . . . . . . 8 |
5 | 1, 4 | nfim 1560 | . . . . . . 7 |
6 | 5 | nfal 1564 | . . . . . 6 |
7 | nfv 1516 | . . . . . 6 | |
8 | 6, 7 | nfan 1553 | . . . . 5 |
9 | breq1 3985 | . . . . . . . . 9 | |
10 | simpr 109 | . . . . . . . . 9 | |
11 | 0elpw 4143 | . . . . . . . . . 10 | |
12 | 11 | a1i 9 | . . . . . . . . 9 |
13 | 9, 10, 12 | rspcdva 2835 | . . . . . . . 8 |
14 | 0ex 4109 | . . . . . . . . 9 | |
15 | vex 2729 | . . . . . . . . 9 | |
16 | 14, 15 | brcnv 4787 | . . . . . . . 8 |
17 | 13, 16 | sylib 121 | . . . . . . 7 |
18 | fofn 5412 | . . . . . . . . 9 | |
19 | 18 | ad3antlr 485 | . . . . . . . 8 |
20 | simplr 520 | . . . . . . . 8 | |
21 | fnbrfvb 5527 | . . . . . . . 8 | |
22 | 19, 20, 21 | syl2anc 409 | . . . . . . 7 |
23 | 17, 22 | mpbird 166 | . . . . . 6 |
24 | breq1 3985 | . . . . . . . . . 10 | |
25 | 1oex 6392 | . . . . . . . . . . . 12 | |
26 | 25 | pwid 3574 | . . . . . . . . . . 11 |
27 | 26 | a1i 9 | . . . . . . . . . 10 |
28 | 24, 10, 27 | rspcdva 2835 | . . . . . . . . 9 |
29 | 25, 15 | brcnv 4787 | . . . . . . . . 9 |
30 | 28, 29 | sylib 121 | . . . . . . . 8 |
31 | fnbrfvb 5527 | . . . . . . . . 9 | |
32 | 19, 20, 31 | syl2anc 409 | . . . . . . . 8 |
33 | 30, 32 | mpbird 166 | . . . . . . 7 |
34 | 1n0 6400 | . . . . . . . 8 | |
35 | 34 | neii 2338 | . . . . . . 7 |
36 | eqeq1 2172 | . . . . . . . . 9 | |
37 | 36 | biimpd 143 | . . . . . . . 8 |
38 | 37 | con3dimp 625 | . . . . . . 7 |
39 | 33, 35, 38 | sylancl 410 | . . . . . 6 |
40 | 23, 39 | pm2.21fal 1363 | . . . . 5 |
41 | fof 5410 | . . . . . . . 8 | |
42 | fssxp 5355 | . . . . . . . . . 10 | |
43 | cnvss 4777 | . . . . . . . . . 10 | |
44 | 42, 43 | syl 14 | . . . . . . . . 9 |
45 | cnvxp 5022 | . . . . . . . . 9 | |
46 | 44, 45 | sseqtrdi 3190 | . . . . . . . 8 |
47 | 41, 46 | syl 14 | . . . . . . 7 |
48 | 47 | adantl 275 | . . . . . 6 |
49 | foelrn 5721 | . . . . . . . . 9 | |
50 | 18 | ad2antrr 480 | . . . . . . . . . . 11 |
51 | simpr 109 | . . . . . . . . . . 11 | |
52 | eqcom 2167 | . . . . . . . . . . . 12 | |
53 | fnbrfvb 5527 | . . . . . . . . . . . . 13 | |
54 | brcnvg 4785 | . . . . . . . . . . . . . . 15 | |
55 | 54 | elvd 2731 | . . . . . . . . . . . . . 14 |
56 | 55 | elv 2730 | . . . . . . . . . . . . 13 |
57 | 53, 56 | bitr4di 197 | . . . . . . . . . . . 12 |
58 | 52, 57 | bitr3id 193 | . . . . . . . . . . 11 |
59 | 50, 51, 58 | syl2anc 409 | . . . . . . . . . 10 |
60 | 59 | rexbidva 2463 | . . . . . . . . 9 |
61 | 49, 60 | mpbid 146 | . . . . . . . 8 |
62 | 61 | ralrimiva 2539 | . . . . . . 7 |
63 | 62 | adantl 275 | . . . . . 6 |
64 | cnvexg 5141 | . . . . . . . 8 | |
65 | 64 | elv 2730 | . . . . . . 7 |
66 | simpl 108 | . . . . . . 7 | |
67 | sseq1 3165 | . . . . . . . . 9 | |
68 | breq 3984 | . . . . . . . . . . . 12 | |
69 | 68 | rexbidv 2467 | . . . . . . . . . . 11 |
70 | 69 | ralbidv 2466 | . . . . . . . . . 10 |
71 | breq 3984 | . . . . . . . . . . . 12 | |
72 | 71 | ralbidv 2466 | . . . . . . . . . . 11 |
73 | 72 | rexbidv 2467 | . . . . . . . . . 10 |
74 | 70, 73 | imbi12d 233 | . . . . . . . . 9 |
75 | 67, 74 | imbi12d 233 | . . . . . . . 8 |
76 | 75 | spcgv 2813 | . . . . . . 7 |
77 | 65, 66, 76 | mpsyl 65 | . . . . . 6 |
78 | 48, 63, 77 | mp2d 47 | . . . . 5 |
79 | 8, 40, 78 | r19.29af 2607 | . . . 4 |
80 | 79 | inegd 1362 | . . 3 |
81 | 80 | nexdv 1924 | . 2 |
82 | elex2 2742 | . . 3 | |
83 | ctm 7074 | . . 3 ⊔ | |
84 | 11, 82, 83 | mp2b 8 | . 2 ⊔ |
85 | 81, 84 | sylnibr 667 | 1 ⊔ |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wal 1341 wceq 1343 wfal 1348 wex 1480 wcel 2136 wral 2444 wrex 2445 cvv 2726 wss 3116 c0 3409 cpw 3559 class class class wbr 3982 com 4567 cxp 4602 ccnv 4603 wfn 5183 wf 5184 wfo 5186 cfv 5188 c1o 6377 ⊔ cdju 7002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-dju 7003 df-inl 7012 df-inr 7013 df-case 7049 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |