Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > pw1nct | Unicode version |
Description: A condition which ensures that the powerset of a singleton is not countable. The antecedent here can be referred to as the uniformity principle. Based on Mastodon posts by Andrej Bauer and Rahul Chhabra. (Contributed by Jim Kingdon, 29-May-2024.) |
Ref | Expression |
---|---|
pw1nct | ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . . . . . . . 8 | |
2 | nfv 1521 | . . . . . . . . 9 | |
3 | nfre1 2513 | . . . . . . . . 9 | |
4 | 2, 3 | nfim 1565 | . . . . . . . 8 |
5 | 1, 4 | nfim 1565 | . . . . . . 7 |
6 | 5 | nfal 1569 | . . . . . 6 |
7 | nfv 1521 | . . . . . 6 | |
8 | 6, 7 | nfan 1558 | . . . . 5 |
9 | breq1 3990 | . . . . . . . . 9 | |
10 | simpr 109 | . . . . . . . . 9 | |
11 | 0elpw 4148 | . . . . . . . . . 10 | |
12 | 11 | a1i 9 | . . . . . . . . 9 |
13 | 9, 10, 12 | rspcdva 2839 | . . . . . . . 8 |
14 | 0ex 4114 | . . . . . . . . 9 | |
15 | vex 2733 | . . . . . . . . 9 | |
16 | 14, 15 | brcnv 4792 | . . . . . . . 8 |
17 | 13, 16 | sylib 121 | . . . . . . 7 |
18 | fofn 5420 | . . . . . . . . 9 | |
19 | 18 | ad3antlr 490 | . . . . . . . 8 |
20 | simplr 525 | . . . . . . . 8 | |
21 | fnbrfvb 5535 | . . . . . . . 8 | |
22 | 19, 20, 21 | syl2anc 409 | . . . . . . 7 |
23 | 17, 22 | mpbird 166 | . . . . . 6 |
24 | breq1 3990 | . . . . . . . . . 10 | |
25 | 1oex 6400 | . . . . . . . . . . . 12 | |
26 | 25 | pwid 3579 | . . . . . . . . . . 11 |
27 | 26 | a1i 9 | . . . . . . . . . 10 |
28 | 24, 10, 27 | rspcdva 2839 | . . . . . . . . 9 |
29 | 25, 15 | brcnv 4792 | . . . . . . . . 9 |
30 | 28, 29 | sylib 121 | . . . . . . . 8 |
31 | fnbrfvb 5535 | . . . . . . . . 9 | |
32 | 19, 20, 31 | syl2anc 409 | . . . . . . . 8 |
33 | 30, 32 | mpbird 166 | . . . . . . 7 |
34 | 1n0 6408 | . . . . . . . 8 | |
35 | 34 | neii 2342 | . . . . . . 7 |
36 | eqeq1 2177 | . . . . . . . . 9 | |
37 | 36 | biimpd 143 | . . . . . . . 8 |
38 | 37 | con3dimp 630 | . . . . . . 7 |
39 | 33, 35, 38 | sylancl 411 | . . . . . 6 |
40 | 23, 39 | pm2.21fal 1368 | . . . . 5 |
41 | fof 5418 | . . . . . . . 8 | |
42 | fssxp 5363 | . . . . . . . . . 10 | |
43 | cnvss 4782 | . . . . . . . . . 10 | |
44 | 42, 43 | syl 14 | . . . . . . . . 9 |
45 | cnvxp 5027 | . . . . . . . . 9 | |
46 | 44, 45 | sseqtrdi 3195 | . . . . . . . 8 |
47 | 41, 46 | syl 14 | . . . . . . 7 |
48 | 47 | adantl 275 | . . . . . 6 |
49 | foelrn 5729 | . . . . . . . . 9 | |
50 | 18 | ad2antrr 485 | . . . . . . . . . . 11 |
51 | simpr 109 | . . . . . . . . . . 11 | |
52 | eqcom 2172 | . . . . . . . . . . . 12 | |
53 | fnbrfvb 5535 | . . . . . . . . . . . . 13 | |
54 | brcnvg 4790 | . . . . . . . . . . . . . . 15 | |
55 | 54 | elvd 2735 | . . . . . . . . . . . . . 14 |
56 | 55 | elv 2734 | . . . . . . . . . . . . 13 |
57 | 53, 56 | bitr4di 197 | . . . . . . . . . . . 12 |
58 | 52, 57 | bitr3id 193 | . . . . . . . . . . 11 |
59 | 50, 51, 58 | syl2anc 409 | . . . . . . . . . 10 |
60 | 59 | rexbidva 2467 | . . . . . . . . 9 |
61 | 49, 60 | mpbid 146 | . . . . . . . 8 |
62 | 61 | ralrimiva 2543 | . . . . . . 7 |
63 | 62 | adantl 275 | . . . . . 6 |
64 | cnvexg 5146 | . . . . . . . 8 | |
65 | 64 | elv 2734 | . . . . . . 7 |
66 | simpl 108 | . . . . . . 7 | |
67 | sseq1 3170 | . . . . . . . . 9 | |
68 | breq 3989 | . . . . . . . . . . . 12 | |
69 | 68 | rexbidv 2471 | . . . . . . . . . . 11 |
70 | 69 | ralbidv 2470 | . . . . . . . . . 10 |
71 | breq 3989 | . . . . . . . . . . . 12 | |
72 | 71 | ralbidv 2470 | . . . . . . . . . . 11 |
73 | 72 | rexbidv 2471 | . . . . . . . . . 10 |
74 | 70, 73 | imbi12d 233 | . . . . . . . . 9 |
75 | 67, 74 | imbi12d 233 | . . . . . . . 8 |
76 | 75 | spcgv 2817 | . . . . . . 7 |
77 | 65, 66, 76 | mpsyl 65 | . . . . . 6 |
78 | 48, 63, 77 | mp2d 47 | . . . . 5 |
79 | 8, 40, 78 | r19.29af 2611 | . . . 4 |
80 | 79 | inegd 1367 | . . 3 |
81 | 80 | nexdv 1929 | . 2 |
82 | elex2 2746 | . . 3 | |
83 | ctm 7082 | . . 3 ⊔ | |
84 | 11, 82, 83 | mp2b 8 | . 2 ⊔ |
85 | 81, 84 | sylnibr 672 | 1 ⊔ |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wal 1346 wceq 1348 wfal 1353 wex 1485 wcel 2141 wral 2448 wrex 2449 cvv 2730 wss 3121 c0 3414 cpw 3564 class class class wbr 3987 com 4572 cxp 4607 ccnv 4608 wfn 5191 wf 5192 wfo 5194 cfv 5196 c1o 6385 ⊔ cdju 7010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-1st 6116 df-2nd 6117 df-1o 6392 df-dju 7011 df-inl 7020 df-inr 7021 df-case 7057 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |