| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > pw1nct | Unicode version | ||
| Description: A condition which ensures that the powerset of a singleton is not countable. The antecedent here can be referred to as the uniformity principle. Based on Mastodon posts by Andrej Bauer and Rahul Chhabra. (Contributed by Jim Kingdon, 29-May-2024.) |
| Ref | Expression |
|---|---|
| pw1nct |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 |
. . . . . . . 8
| |
| 2 | nfv 1551 |
. . . . . . . . 9
| |
| 3 | nfre1 2549 |
. . . . . . . . 9
| |
| 4 | 2, 3 | nfim 1595 |
. . . . . . . 8
|
| 5 | 1, 4 | nfim 1595 |
. . . . . . 7
|
| 6 | 5 | nfal 1599 |
. . . . . 6
|
| 7 | nfv 1551 |
. . . . . 6
| |
| 8 | 6, 7 | nfan 1588 |
. . . . 5
|
| 9 | breq1 4047 |
. . . . . . . . 9
| |
| 10 | simpr 110 |
. . . . . . . . 9
| |
| 11 | 0elpw 4208 |
. . . . . . . . . 10
| |
| 12 | 11 | a1i 9 |
. . . . . . . . 9
|
| 13 | 9, 10, 12 | rspcdva 2882 |
. . . . . . . 8
|
| 14 | 0ex 4171 |
. . . . . . . . 9
| |
| 15 | vex 2775 |
. . . . . . . . 9
| |
| 16 | 14, 15 | brcnv 4861 |
. . . . . . . 8
|
| 17 | 13, 16 | sylib 122 |
. . . . . . 7
|
| 18 | fofn 5500 |
. . . . . . . . 9
| |
| 19 | 18 | ad3antlr 493 |
. . . . . . . 8
|
| 20 | simplr 528 |
. . . . . . . 8
| |
| 21 | fnbrfvb 5619 |
. . . . . . . 8
| |
| 22 | 19, 20, 21 | syl2anc 411 |
. . . . . . 7
|
| 23 | 17, 22 | mpbird 167 |
. . . . . 6
|
| 24 | breq1 4047 |
. . . . . . . . . 10
| |
| 25 | 1oex 6510 |
. . . . . . . . . . . 12
| |
| 26 | 25 | pwid 3631 |
. . . . . . . . . . 11
|
| 27 | 26 | a1i 9 |
. . . . . . . . . 10
|
| 28 | 24, 10, 27 | rspcdva 2882 |
. . . . . . . . 9
|
| 29 | 25, 15 | brcnv 4861 |
. . . . . . . . 9
|
| 30 | 28, 29 | sylib 122 |
. . . . . . . 8
|
| 31 | fnbrfvb 5619 |
. . . . . . . . 9
| |
| 32 | 19, 20, 31 | syl2anc 411 |
. . . . . . . 8
|
| 33 | 30, 32 | mpbird 167 |
. . . . . . 7
|
| 34 | 1n0 6518 |
. . . . . . . 8
| |
| 35 | 34 | neii 2378 |
. . . . . . 7
|
| 36 | eqeq1 2212 |
. . . . . . . . 9
| |
| 37 | 36 | biimpd 144 |
. . . . . . . 8
|
| 38 | 37 | con3dimp 636 |
. . . . . . 7
|
| 39 | 33, 35, 38 | sylancl 413 |
. . . . . 6
|
| 40 | 23, 39 | pm2.21fal 1393 |
. . . . 5
|
| 41 | fof 5498 |
. . . . . . . 8
| |
| 42 | fssxp 5443 |
. . . . . . . . . 10
| |
| 43 | cnvss 4851 |
. . . . . . . . . 10
| |
| 44 | 42, 43 | syl 14 |
. . . . . . . . 9
|
| 45 | cnvxp 5101 |
. . . . . . . . 9
| |
| 46 | 44, 45 | sseqtrdi 3241 |
. . . . . . . 8
|
| 47 | 41, 46 | syl 14 |
. . . . . . 7
|
| 48 | 47 | adantl 277 |
. . . . . 6
|
| 49 | foelrn 5821 |
. . . . . . . . 9
| |
| 50 | 18 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 51 | simpr 110 |
. . . . . . . . . . 11
| |
| 52 | eqcom 2207 |
. . . . . . . . . . . 12
| |
| 53 | fnbrfvb 5619 |
. . . . . . . . . . . . 13
| |
| 54 | brcnvg 4859 |
. . . . . . . . . . . . . . 15
| |
| 55 | 54 | elvd 2777 |
. . . . . . . . . . . . . 14
|
| 56 | 55 | elv 2776 |
. . . . . . . . . . . . 13
|
| 57 | 53, 56 | bitr4di 198 |
. . . . . . . . . . . 12
|
| 58 | 52, 57 | bitr3id 194 |
. . . . . . . . . . 11
|
| 59 | 50, 51, 58 | syl2anc 411 |
. . . . . . . . . 10
|
| 60 | 59 | rexbidva 2503 |
. . . . . . . . 9
|
| 61 | 49, 60 | mpbid 147 |
. . . . . . . 8
|
| 62 | 61 | ralrimiva 2579 |
. . . . . . 7
|
| 63 | 62 | adantl 277 |
. . . . . 6
|
| 64 | cnvexg 5220 |
. . . . . . . 8
| |
| 65 | 64 | elv 2776 |
. . . . . . 7
|
| 66 | simpl 109 |
. . . . . . 7
| |
| 67 | sseq1 3216 |
. . . . . . . . 9
| |
| 68 | breq 4046 |
. . . . . . . . . . . 12
| |
| 69 | 68 | rexbidv 2507 |
. . . . . . . . . . 11
|
| 70 | 69 | ralbidv 2506 |
. . . . . . . . . 10
|
| 71 | breq 4046 |
. . . . . . . . . . . 12
| |
| 72 | 71 | ralbidv 2506 |
. . . . . . . . . . 11
|
| 73 | 72 | rexbidv 2507 |
. . . . . . . . . 10
|
| 74 | 70, 73 | imbi12d 234 |
. . . . . . . . 9
|
| 75 | 67, 74 | imbi12d 234 |
. . . . . . . 8
|
| 76 | 75 | spcgv 2860 |
. . . . . . 7
|
| 77 | 65, 66, 76 | mpsyl 65 |
. . . . . 6
|
| 78 | 48, 63, 77 | mp2d 47 |
. . . . 5
|
| 79 | 8, 40, 78 | r19.29af 2647 |
. . . 4
|
| 80 | 79 | inegd 1392 |
. . 3
|
| 81 | 80 | nexdv 1964 |
. 2
|
| 82 | elex2 2788 |
. . 3
| |
| 83 | ctm 7211 |
. . 3
| |
| 84 | 11, 82, 83 | mp2b 8 |
. 2
|
| 85 | 81, 84 | sylnibr 679 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-1st 6226 df-2nd 6227 df-1o 6502 df-dju 7140 df-inl 7149 df-inr 7150 df-case 7186 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |