| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > pw1nct | Unicode version | ||
| Description: A condition which ensures that the powerset of a singleton is not countable. The antecedent here can be referred to as the uniformity principle. Based on Mastodon posts by Andrej Bauer and Rahul Chhabra. (Contributed by Jim Kingdon, 29-May-2024.) |
| Ref | Expression |
|---|---|
| pw1nct |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 |
. . . . . . . 8
| |
| 2 | nfv 1542 |
. . . . . . . . 9
| |
| 3 | nfre1 2540 |
. . . . . . . . 9
| |
| 4 | 2, 3 | nfim 1586 |
. . . . . . . 8
|
| 5 | 1, 4 | nfim 1586 |
. . . . . . 7
|
| 6 | 5 | nfal 1590 |
. . . . . 6
|
| 7 | nfv 1542 |
. . . . . 6
| |
| 8 | 6, 7 | nfan 1579 |
. . . . 5
|
| 9 | breq1 4037 |
. . . . . . . . 9
| |
| 10 | simpr 110 |
. . . . . . . . 9
| |
| 11 | 0elpw 4198 |
. . . . . . . . . 10
| |
| 12 | 11 | a1i 9 |
. . . . . . . . 9
|
| 13 | 9, 10, 12 | rspcdva 2873 |
. . . . . . . 8
|
| 14 | 0ex 4161 |
. . . . . . . . 9
| |
| 15 | vex 2766 |
. . . . . . . . 9
| |
| 16 | 14, 15 | brcnv 4850 |
. . . . . . . 8
|
| 17 | 13, 16 | sylib 122 |
. . . . . . 7
|
| 18 | fofn 5485 |
. . . . . . . . 9
| |
| 19 | 18 | ad3antlr 493 |
. . . . . . . 8
|
| 20 | simplr 528 |
. . . . . . . 8
| |
| 21 | fnbrfvb 5604 |
. . . . . . . 8
| |
| 22 | 19, 20, 21 | syl2anc 411 |
. . . . . . 7
|
| 23 | 17, 22 | mpbird 167 |
. . . . . 6
|
| 24 | breq1 4037 |
. . . . . . . . . 10
| |
| 25 | 1oex 6491 |
. . . . . . . . . . . 12
| |
| 26 | 25 | pwid 3621 |
. . . . . . . . . . 11
|
| 27 | 26 | a1i 9 |
. . . . . . . . . 10
|
| 28 | 24, 10, 27 | rspcdva 2873 |
. . . . . . . . 9
|
| 29 | 25, 15 | brcnv 4850 |
. . . . . . . . 9
|
| 30 | 28, 29 | sylib 122 |
. . . . . . . 8
|
| 31 | fnbrfvb 5604 |
. . . . . . . . 9
| |
| 32 | 19, 20, 31 | syl2anc 411 |
. . . . . . . 8
|
| 33 | 30, 32 | mpbird 167 |
. . . . . . 7
|
| 34 | 1n0 6499 |
. . . . . . . 8
| |
| 35 | 34 | neii 2369 |
. . . . . . 7
|
| 36 | eqeq1 2203 |
. . . . . . . . 9
| |
| 37 | 36 | biimpd 144 |
. . . . . . . 8
|
| 38 | 37 | con3dimp 636 |
. . . . . . 7
|
| 39 | 33, 35, 38 | sylancl 413 |
. . . . . 6
|
| 40 | 23, 39 | pm2.21fal 1384 |
. . . . 5
|
| 41 | fof 5483 |
. . . . . . . 8
| |
| 42 | fssxp 5428 |
. . . . . . . . . 10
| |
| 43 | cnvss 4840 |
. . . . . . . . . 10
| |
| 44 | 42, 43 | syl 14 |
. . . . . . . . 9
|
| 45 | cnvxp 5089 |
. . . . . . . . 9
| |
| 46 | 44, 45 | sseqtrdi 3232 |
. . . . . . . 8
|
| 47 | 41, 46 | syl 14 |
. . . . . . 7
|
| 48 | 47 | adantl 277 |
. . . . . 6
|
| 49 | foelrn 5802 |
. . . . . . . . 9
| |
| 50 | 18 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 51 | simpr 110 |
. . . . . . . . . . 11
| |
| 52 | eqcom 2198 |
. . . . . . . . . . . 12
| |
| 53 | fnbrfvb 5604 |
. . . . . . . . . . . . 13
| |
| 54 | brcnvg 4848 |
. . . . . . . . . . . . . . 15
| |
| 55 | 54 | elvd 2768 |
. . . . . . . . . . . . . 14
|
| 56 | 55 | elv 2767 |
. . . . . . . . . . . . 13
|
| 57 | 53, 56 | bitr4di 198 |
. . . . . . . . . . . 12
|
| 58 | 52, 57 | bitr3id 194 |
. . . . . . . . . . 11
|
| 59 | 50, 51, 58 | syl2anc 411 |
. . . . . . . . . 10
|
| 60 | 59 | rexbidva 2494 |
. . . . . . . . 9
|
| 61 | 49, 60 | mpbid 147 |
. . . . . . . 8
|
| 62 | 61 | ralrimiva 2570 |
. . . . . . 7
|
| 63 | 62 | adantl 277 |
. . . . . 6
|
| 64 | cnvexg 5208 |
. . . . . . . 8
| |
| 65 | 64 | elv 2767 |
. . . . . . 7
|
| 66 | simpl 109 |
. . . . . . 7
| |
| 67 | sseq1 3207 |
. . . . . . . . 9
| |
| 68 | breq 4036 |
. . . . . . . . . . . 12
| |
| 69 | 68 | rexbidv 2498 |
. . . . . . . . . . 11
|
| 70 | 69 | ralbidv 2497 |
. . . . . . . . . 10
|
| 71 | breq 4036 |
. . . . . . . . . . . 12
| |
| 72 | 71 | ralbidv 2497 |
. . . . . . . . . . 11
|
| 73 | 72 | rexbidv 2498 |
. . . . . . . . . 10
|
| 74 | 70, 73 | imbi12d 234 |
. . . . . . . . 9
|
| 75 | 67, 74 | imbi12d 234 |
. . . . . . . 8
|
| 76 | 75 | spcgv 2851 |
. . . . . . 7
|
| 77 | 65, 66, 76 | mpsyl 65 |
. . . . . 6
|
| 78 | 48, 63, 77 | mp2d 47 |
. . . . 5
|
| 79 | 8, 40, 78 | r19.29af 2638 |
. . . 4
|
| 80 | 79 | inegd 1383 |
. . 3
|
| 81 | 80 | nexdv 1955 |
. 2
|
| 82 | elex2 2779 |
. . 3
| |
| 83 | ctm 7184 |
. . 3
| |
| 84 | 11, 82, 83 | mp2b 8 |
. 2
|
| 85 | 81, 84 | sylnibr 678 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-1st 6207 df-2nd 6208 df-1o 6483 df-dju 7113 df-inl 7122 df-inr 7123 df-case 7159 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |