| Mathbox for Jim Kingdon | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > pw1nct | Unicode version | ||
| Description: A condition which ensures that the powerset of a singleton is not countable. The antecedent here can be referred to as the uniformity principle. Based on Mastodon posts by Andrej Bauer and Rahul Chhabra. (Contributed by Jim Kingdon, 29-May-2024.) | 
| Ref | Expression | 
|---|---|
| pw1nct | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1542 | 
. . . . . . . 8
 | |
| 2 | nfv 1542 | 
. . . . . . . . 9
 | |
| 3 | nfre1 2540 | 
. . . . . . . . 9
 | |
| 4 | 2, 3 | nfim 1586 | 
. . . . . . . 8
 | 
| 5 | 1, 4 | nfim 1586 | 
. . . . . . 7
 | 
| 6 | 5 | nfal 1590 | 
. . . . . 6
 | 
| 7 | nfv 1542 | 
. . . . . 6
 | |
| 8 | 6, 7 | nfan 1579 | 
. . . . 5
 | 
| 9 | breq1 4036 | 
. . . . . . . . 9
 | |
| 10 | simpr 110 | 
. . . . . . . . 9
 | |
| 11 | 0elpw 4197 | 
. . . . . . . . . 10
 | |
| 12 | 11 | a1i 9 | 
. . . . . . . . 9
 | 
| 13 | 9, 10, 12 | rspcdva 2873 | 
. . . . . . . 8
 | 
| 14 | 0ex 4160 | 
. . . . . . . . 9
 | |
| 15 | vex 2766 | 
. . . . . . . . 9
 | |
| 16 | 14, 15 | brcnv 4849 | 
. . . . . . . 8
 | 
| 17 | 13, 16 | sylib 122 | 
. . . . . . 7
 | 
| 18 | fofn 5482 | 
. . . . . . . . 9
 | |
| 19 | 18 | ad3antlr 493 | 
. . . . . . . 8
 | 
| 20 | simplr 528 | 
. . . . . . . 8
 | |
| 21 | fnbrfvb 5601 | 
. . . . . . . 8
 | |
| 22 | 19, 20, 21 | syl2anc 411 | 
. . . . . . 7
 | 
| 23 | 17, 22 | mpbird 167 | 
. . . . . 6
 | 
| 24 | breq1 4036 | 
. . . . . . . . . 10
 | |
| 25 | 1oex 6482 | 
. . . . . . . . . . . 12
 | |
| 26 | 25 | pwid 3620 | 
. . . . . . . . . . 11
 | 
| 27 | 26 | a1i 9 | 
. . . . . . . . . 10
 | 
| 28 | 24, 10, 27 | rspcdva 2873 | 
. . . . . . . . 9
 | 
| 29 | 25, 15 | brcnv 4849 | 
. . . . . . . . 9
 | 
| 30 | 28, 29 | sylib 122 | 
. . . . . . . 8
 | 
| 31 | fnbrfvb 5601 | 
. . . . . . . . 9
 | |
| 32 | 19, 20, 31 | syl2anc 411 | 
. . . . . . . 8
 | 
| 33 | 30, 32 | mpbird 167 | 
. . . . . . 7
 | 
| 34 | 1n0 6490 | 
. . . . . . . 8
 | |
| 35 | 34 | neii 2369 | 
. . . . . . 7
 | 
| 36 | eqeq1 2203 | 
. . . . . . . . 9
 | |
| 37 | 36 | biimpd 144 | 
. . . . . . . 8
 | 
| 38 | 37 | con3dimp 636 | 
. . . . . . 7
 | 
| 39 | 33, 35, 38 | sylancl 413 | 
. . . . . 6
 | 
| 40 | 23, 39 | pm2.21fal 1384 | 
. . . . 5
 | 
| 41 | fof 5480 | 
. . . . . . . 8
 | |
| 42 | fssxp 5425 | 
. . . . . . . . . 10
 | |
| 43 | cnvss 4839 | 
. . . . . . . . . 10
 | |
| 44 | 42, 43 | syl 14 | 
. . . . . . . . 9
 | 
| 45 | cnvxp 5088 | 
. . . . . . . . 9
 | |
| 46 | 44, 45 | sseqtrdi 3231 | 
. . . . . . . 8
 | 
| 47 | 41, 46 | syl 14 | 
. . . . . . 7
 | 
| 48 | 47 | adantl 277 | 
. . . . . 6
 | 
| 49 | foelrn 5799 | 
. . . . . . . . 9
 | |
| 50 | 18 | ad2antrr 488 | 
. . . . . . . . . . 11
 | 
| 51 | simpr 110 | 
. . . . . . . . . . 11
 | |
| 52 | eqcom 2198 | 
. . . . . . . . . . . 12
 | |
| 53 | fnbrfvb 5601 | 
. . . . . . . . . . . . 13
 | |
| 54 | brcnvg 4847 | 
. . . . . . . . . . . . . . 15
 | |
| 55 | 54 | elvd 2768 | 
. . . . . . . . . . . . . 14
 | 
| 56 | 55 | elv 2767 | 
. . . . . . . . . . . . 13
 | 
| 57 | 53, 56 | bitr4di 198 | 
. . . . . . . . . . . 12
 | 
| 58 | 52, 57 | bitr3id 194 | 
. . . . . . . . . . 11
 | 
| 59 | 50, 51, 58 | syl2anc 411 | 
. . . . . . . . . 10
 | 
| 60 | 59 | rexbidva 2494 | 
. . . . . . . . 9
 | 
| 61 | 49, 60 | mpbid 147 | 
. . . . . . . 8
 | 
| 62 | 61 | ralrimiva 2570 | 
. . . . . . 7
 | 
| 63 | 62 | adantl 277 | 
. . . . . 6
 | 
| 64 | cnvexg 5207 | 
. . . . . . . 8
 | |
| 65 | 64 | elv 2767 | 
. . . . . . 7
 | 
| 66 | simpl 109 | 
. . . . . . 7
 | |
| 67 | sseq1 3206 | 
. . . . . . . . 9
 | |
| 68 | breq 4035 | 
. . . . . . . . . . . 12
 | |
| 69 | 68 | rexbidv 2498 | 
. . . . . . . . . . 11
 | 
| 70 | 69 | ralbidv 2497 | 
. . . . . . . . . 10
 | 
| 71 | breq 4035 | 
. . . . . . . . . . . 12
 | |
| 72 | 71 | ralbidv 2497 | 
. . . . . . . . . . 11
 | 
| 73 | 72 | rexbidv 2498 | 
. . . . . . . . . 10
 | 
| 74 | 70, 73 | imbi12d 234 | 
. . . . . . . . 9
 | 
| 75 | 67, 74 | imbi12d 234 | 
. . . . . . . 8
 | 
| 76 | 75 | spcgv 2851 | 
. . . . . . 7
 | 
| 77 | 65, 66, 76 | mpsyl 65 | 
. . . . . 6
 | 
| 78 | 48, 63, 77 | mp2d 47 | 
. . . . 5
 | 
| 79 | 8, 40, 78 | r19.29af 2638 | 
. . . 4
 | 
| 80 | 79 | inegd 1383 | 
. . 3
 | 
| 81 | 80 | nexdv 1955 | 
. 2
 | 
| 82 | elex2 2779 | 
. . 3
 | |
| 83 | ctm 7175 | 
. . 3
 | |
| 84 | 11, 82, 83 | mp2b 8 | 
. 2
 | 
| 85 | 81, 84 | sylnibr 678 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-1st 6198 df-2nd 6199 df-1o 6474 df-dju 7104 df-inl 7113 df-inr 7114 df-case 7150 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |