| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > pw1nct | Unicode version | ||
| Description: A condition which ensures that the powerset of a singleton is not countable. The antecedent here can be referred to as the uniformity principle. Based on Mastodon posts by Andrej Bauer and Rahul Chhabra. (Contributed by Jim Kingdon, 29-May-2024.) |
| Ref | Expression |
|---|---|
| pw1nct |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 |
. . . . . . . 8
| |
| 2 | nfv 1574 |
. . . . . . . . 9
| |
| 3 | nfre1 2573 |
. . . . . . . . 9
| |
| 4 | 2, 3 | nfim 1618 |
. . . . . . . 8
|
| 5 | 1, 4 | nfim 1618 |
. . . . . . 7
|
| 6 | 5 | nfal 1622 |
. . . . . 6
|
| 7 | nfv 1574 |
. . . . . 6
| |
| 8 | 6, 7 | nfan 1611 |
. . . . 5
|
| 9 | breq1 4086 |
. . . . . . . . 9
| |
| 10 | simpr 110 |
. . . . . . . . 9
| |
| 11 | 0elpw 4248 |
. . . . . . . . . 10
| |
| 12 | 11 | a1i 9 |
. . . . . . . . 9
|
| 13 | 9, 10, 12 | rspcdva 2912 |
. . . . . . . 8
|
| 14 | 0ex 4211 |
. . . . . . . . 9
| |
| 15 | vex 2802 |
. . . . . . . . 9
| |
| 16 | 14, 15 | brcnv 4905 |
. . . . . . . 8
|
| 17 | 13, 16 | sylib 122 |
. . . . . . 7
|
| 18 | fofn 5550 |
. . . . . . . . 9
| |
| 19 | 18 | ad3antlr 493 |
. . . . . . . 8
|
| 20 | simplr 528 |
. . . . . . . 8
| |
| 21 | fnbrfvb 5672 |
. . . . . . . 8
| |
| 22 | 19, 20, 21 | syl2anc 411 |
. . . . . . 7
|
| 23 | 17, 22 | mpbird 167 |
. . . . . 6
|
| 24 | breq1 4086 |
. . . . . . . . . 10
| |
| 25 | 1oex 6570 |
. . . . . . . . . . . 12
| |
| 26 | 25 | pwid 3664 |
. . . . . . . . . . 11
|
| 27 | 26 | a1i 9 |
. . . . . . . . . 10
|
| 28 | 24, 10, 27 | rspcdva 2912 |
. . . . . . . . 9
|
| 29 | 25, 15 | brcnv 4905 |
. . . . . . . . 9
|
| 30 | 28, 29 | sylib 122 |
. . . . . . . 8
|
| 31 | fnbrfvb 5672 |
. . . . . . . . 9
| |
| 32 | 19, 20, 31 | syl2anc 411 |
. . . . . . . 8
|
| 33 | 30, 32 | mpbird 167 |
. . . . . . 7
|
| 34 | 1n0 6578 |
. . . . . . . 8
| |
| 35 | 34 | neii 2402 |
. . . . . . 7
|
| 36 | eqeq1 2236 |
. . . . . . . . 9
| |
| 37 | 36 | biimpd 144 |
. . . . . . . 8
|
| 38 | 37 | con3dimp 638 |
. . . . . . 7
|
| 39 | 33, 35, 38 | sylancl 413 |
. . . . . 6
|
| 40 | 23, 39 | pm2.21fal 1415 |
. . . . 5
|
| 41 | fof 5548 |
. . . . . . . 8
| |
| 42 | fssxp 5491 |
. . . . . . . . . 10
| |
| 43 | cnvss 4895 |
. . . . . . . . . 10
| |
| 44 | 42, 43 | syl 14 |
. . . . . . . . 9
|
| 45 | cnvxp 5147 |
. . . . . . . . 9
| |
| 46 | 44, 45 | sseqtrdi 3272 |
. . . . . . . 8
|
| 47 | 41, 46 | syl 14 |
. . . . . . 7
|
| 48 | 47 | adantl 277 |
. . . . . 6
|
| 49 | foelrn 5876 |
. . . . . . . . 9
| |
| 50 | 18 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 51 | simpr 110 |
. . . . . . . . . . 11
| |
| 52 | eqcom 2231 |
. . . . . . . . . . . 12
| |
| 53 | fnbrfvb 5672 |
. . . . . . . . . . . . 13
| |
| 54 | brcnvg 4903 |
. . . . . . . . . . . . . . 15
| |
| 55 | 54 | elvd 2804 |
. . . . . . . . . . . . . 14
|
| 56 | 55 | elv 2803 |
. . . . . . . . . . . . 13
|
| 57 | 53, 56 | bitr4di 198 |
. . . . . . . . . . . 12
|
| 58 | 52, 57 | bitr3id 194 |
. . . . . . . . . . 11
|
| 59 | 50, 51, 58 | syl2anc 411 |
. . . . . . . . . 10
|
| 60 | 59 | rexbidva 2527 |
. . . . . . . . 9
|
| 61 | 49, 60 | mpbid 147 |
. . . . . . . 8
|
| 62 | 61 | ralrimiva 2603 |
. . . . . . 7
|
| 63 | 62 | adantl 277 |
. . . . . 6
|
| 64 | cnvexg 5266 |
. . . . . . . 8
| |
| 65 | 64 | elv 2803 |
. . . . . . 7
|
| 66 | simpl 109 |
. . . . . . 7
| |
| 67 | sseq1 3247 |
. . . . . . . . 9
| |
| 68 | breq 4085 |
. . . . . . . . . . . 12
| |
| 69 | 68 | rexbidv 2531 |
. . . . . . . . . . 11
|
| 70 | 69 | ralbidv 2530 |
. . . . . . . . . 10
|
| 71 | breq 4085 |
. . . . . . . . . . . 12
| |
| 72 | 71 | ralbidv 2530 |
. . . . . . . . . . 11
|
| 73 | 72 | rexbidv 2531 |
. . . . . . . . . 10
|
| 74 | 70, 73 | imbi12d 234 |
. . . . . . . . 9
|
| 75 | 67, 74 | imbi12d 234 |
. . . . . . . 8
|
| 76 | 75 | spcgv 2890 |
. . . . . . 7
|
| 77 | 65, 66, 76 | mpsyl 65 |
. . . . . 6
|
| 78 | 48, 63, 77 | mp2d 47 |
. . . . 5
|
| 79 | 8, 40, 78 | r19.29af 2672 |
. . . 4
|
| 80 | 79 | inegd 1414 |
. . 3
|
| 81 | 80 | nexdv 1987 |
. 2
|
| 82 | elex2 2816 |
. . 3
| |
| 83 | ctm 7276 |
. . 3
| |
| 84 | 11, 82, 83 | mp2b 8 |
. 2
|
| 85 | 81, 84 | sylnibr 681 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-1st 6286 df-2nd 6287 df-1o 6562 df-dju 7205 df-inl 7214 df-inr 7215 df-case 7251 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |