ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgpropd Unicode version

Theorem subrgpropd 14130
Description: If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
subrgpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
subrgpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
subrgpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
subrgpropd.4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
Assertion
Ref Expression
subrgpropd  |-  ( ph  ->  (SubRing `  K )  =  (SubRing `  L )
)
Distinct variable groups:    x, y, B   
x, K, y    ph, x, y    x, L, y

Proof of Theorem subrgpropd
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 subrgrcl 14103 . . . 4  |-  ( s  e.  (SubRing `  K
)  ->  K  e.  Ring )
21a1i 9 . . 3  |-  ( ph  ->  ( s  e.  (SubRing `  K )  ->  K  e.  Ring ) )
3 subrgrcl 14103 . . . 4  |-  ( s  e.  (SubRing `  L
)  ->  L  e.  Ring )
4 subrgpropd.1 . . . . 5  |-  ( ph  ->  B  =  ( Base `  K ) )
5 subrgpropd.2 . . . . 5  |-  ( ph  ->  B  =  ( Base `  L ) )
6 subrgpropd.3 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
7 subrgpropd.4 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
84, 5, 6, 7ringpropd 13915 . . . 4  |-  ( ph  ->  ( K  e.  Ring  <->  L  e.  Ring ) )
93, 8imbitrrid 156 . . 3  |-  ( ph  ->  ( s  e.  (SubRing `  L )  ->  K  e.  Ring ) )
108adantr 276 . . . . . . 7  |-  ( (
ph  /\  K  e.  Ring )  ->  ( K  e.  Ring  <->  L  e.  Ring ) )
114ineq2d 3382 . . . . . . . . . 10  |-  ( ph  ->  ( s  i^i  B
)  =  ( s  i^i  ( Base `  K
) ) )
1211adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  Ring )  ->  ( s  i^i  B )  =  ( s  i^i  ( Base `  K ) ) )
13 eqidd 2208 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  e.  Ring )  /\  s  e.  _V )  ->  ( Ks  s )  =  ( Ks  s ) )
14 eqidd 2208 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  e.  Ring )  /\  s  e.  _V )  ->  ( Base `  K )  =  ( Base `  K
) )
15 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  e.  Ring )  /\  s  e.  _V )  ->  K  e.  Ring )
16 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  e.  Ring )  /\  s  e.  _V )  ->  s  e.  _V )
1713, 14, 15, 16ressbasd 13014 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  e.  Ring )  /\  s  e.  _V )  ->  (
s  i^i  ( Base `  K ) )  =  ( Base `  ( Ks  s ) ) )
1817elvd 2781 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  Ring )  ->  ( s  i^i  ( Base `  K
) )  =  (
Base `  ( Ks  s
) ) )
1912, 18eqtrd 2240 . . . . . . . 8  |-  ( (
ph  /\  K  e.  Ring )  ->  ( s  i^i  B )  =  (
Base `  ( Ks  s
) ) )
205ineq2d 3382 . . . . . . . . . 10  |-  ( ph  ->  ( s  i^i  B
)  =  ( s  i^i  ( Base `  L
) ) )
2120adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  Ring )  ->  ( s  i^i  B )  =  ( s  i^i  ( Base `  L ) ) )
22 eqidd 2208 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  e.  Ring )  /\  s  e.  _V )  ->  ( Ls  s )  =  ( Ls  s ) )
23 eqidd 2208 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  e.  Ring )  /\  s  e.  _V )  ->  ( Base `  L )  =  ( Base `  L
) )
248biimpa 296 . . . . . . . . . . . 12  |-  ( (
ph  /\  K  e.  Ring )  ->  L  e.  Ring )
2524adantr 276 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  e.  Ring )  /\  s  e.  _V )  ->  L  e.  Ring )
2622, 23, 25, 16ressbasd 13014 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  e.  Ring )  /\  s  e.  _V )  ->  (
s  i^i  ( Base `  L ) )  =  ( Base `  ( Ls  s ) ) )
2726elvd 2781 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  Ring )  ->  ( s  i^i  ( Base `  L
) )  =  (
Base `  ( Ls  s
) ) )
2821, 27eqtrd 2240 . . . . . . . 8  |-  ( (
ph  /\  K  e.  Ring )  ->  ( s  i^i  B )  =  (
Base `  ( Ls  s
) ) )
29 elinel2 3368 . . . . . . . . . 10  |-  ( x  e.  ( s  i^i 
B )  ->  x  e.  B )
30 elinel2 3368 . . . . . . . . . 10  |-  ( y  e.  ( s  i^i 
B )  ->  y  e.  B )
3129, 30anim12i 338 . . . . . . . . 9  |-  ( ( x  e.  ( s  i^i  B )  /\  y  e.  ( s  i^i  B ) )  -> 
( x  e.  B  /\  y  e.  B
) )
326adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  e.  Ring )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( +g  `  K ) y )  =  ( x ( +g  `  L
) y ) )
33 eqidd 2208 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  K  e.  Ring )  /\  s  e.  _V )  ->  ( +g  `  K )  =  ( +g  `  K
) )
3413, 33, 16, 15ressplusgd 13076 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  K  e.  Ring )  /\  s  e.  _V )  ->  ( +g  `  K )  =  ( +g  `  ( Ks  s ) ) )
3534elvd 2781 . . . . . . . . . . 11  |-  ( (
ph  /\  K  e.  Ring )  ->  ( +g  `  K )  =  ( +g  `  ( Ks  s ) ) )
3635oveqdr 5995 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  e.  Ring )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( +g  `  K ) y )  =  ( x ( +g  `  ( Ks  s ) ) y ) )
37 eqidd 2208 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  K  e.  Ring )  /\  s  e.  _V )  ->  ( +g  `  L )  =  ( +g  `  L
) )
3822, 37, 16, 25ressplusgd 13076 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  K  e.  Ring )  /\  s  e.  _V )  ->  ( +g  `  L )  =  ( +g  `  ( Ls  s ) ) )
3938elvd 2781 . . . . . . . . . . 11  |-  ( (
ph  /\  K  e.  Ring )  ->  ( +g  `  L )  =  ( +g  `  ( Ls  s ) ) )
4039oveqdr 5995 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  e.  Ring )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( +g  `  L ) y )  =  ( x ( +g  `  ( Ls  s ) ) y ) )
4132, 36, 403eqtr3d 2248 . . . . . . . . 9  |-  ( ( ( ph  /\  K  e.  Ring )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( +g  `  ( Ks  s ) ) y )  =  ( x ( +g  `  ( Ls  s ) ) y ) )
4231, 41sylan2 286 . . . . . . . 8  |-  ( ( ( ph  /\  K  e.  Ring )  /\  (
x  e.  ( s  i^i  B )  /\  y  e.  ( s  i^i  B ) ) )  ->  ( x ( +g  `  ( Ks  s ) ) y )  =  ( x ( +g  `  ( Ls  s ) ) y ) )
437adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  e.  Ring )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( .r `  K
) y )  =  ( x ( .r
`  L ) y ) )
44 vex 2779 . . . . . . . . . . . . 13  |-  s  e. 
_V
45 eqid 2207 . . . . . . . . . . . . . 14  |-  ( Ks  s )  =  ( Ks  s )
46 eqid 2207 . . . . . . . . . . . . . 14  |-  ( .r
`  K )  =  ( .r `  K
)
4745, 46ressmulrg 13092 . . . . . . . . . . . . 13  |-  ( ( s  e.  _V  /\  K  e.  Ring )  -> 
( .r `  K
)  =  ( .r
`  ( Ks  s ) ) )
4844, 47mpan 424 . . . . . . . . . . . 12  |-  ( K  e.  Ring  ->  ( .r
`  K )  =  ( .r `  ( Ks  s ) ) )
4948adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  K  e.  Ring )  ->  ( .r `  K )  =  ( .r `  ( Ks  s ) ) )
5049oveqdr 5995 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  e.  Ring )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( .r `  K
) y )  =  ( x ( .r
`  ( Ks  s ) ) y ) )
51 eqid 2207 . . . . . . . . . . . . 13  |-  ( Ls  s )  =  ( Ls  s )
52 eqid 2207 . . . . . . . . . . . . 13  |-  ( .r
`  L )  =  ( .r `  L
)
5351, 52ressmulrg 13092 . . . . . . . . . . . 12  |-  ( ( s  e.  _V  /\  L  e.  Ring )  -> 
( .r `  L
)  =  ( .r
`  ( Ls  s ) ) )
5444, 24, 53sylancr 414 . . . . . . . . . . 11  |-  ( (
ph  /\  K  e.  Ring )  ->  ( .r `  L )  =  ( .r `  ( Ls  s ) ) )
5554oveqdr 5995 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  e.  Ring )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( .r `  L
) y )  =  ( x ( .r
`  ( Ls  s ) ) y ) )
5643, 50, 553eqtr3d 2248 . . . . . . . . 9  |-  ( ( ( ph  /\  K  e.  Ring )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( .r `  ( Ks  s ) ) y )  =  ( x ( .r `  ( Ls  s ) ) y ) )
5731, 56sylan2 286 . . . . . . . 8  |-  ( ( ( ph  /\  K  e.  Ring )  /\  (
x  e.  ( s  i^i  B )  /\  y  e.  ( s  i^i  B ) ) )  ->  ( x ( .r `  ( Ks  s ) ) y )  =  ( x ( .r `  ( Ls  s ) ) y ) )
5819, 28, 42, 57ringpropd 13915 . . . . . . 7  |-  ( (
ph  /\  K  e.  Ring )  ->  ( ( Ks  s )  e.  Ring  <->  ( Ls  s )  e.  Ring ) )
5910, 58anbi12d 473 . . . . . 6  |-  ( (
ph  /\  K  e.  Ring )  ->  ( ( K  e.  Ring  /\  ( Ks  s )  e.  Ring ) 
<->  ( L  e.  Ring  /\  ( Ls  s )  e. 
Ring ) ) )
604, 5eqtr3d 2242 . . . . . . . . 9  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
6160sseq2d 3231 . . . . . . . 8  |-  ( ph  ->  ( s  C_  ( Base `  K )  <->  s  C_  ( Base `  L )
) )
6261adantr 276 . . . . . . 7  |-  ( (
ph  /\  K  e.  Ring )  ->  ( s  C_  ( Base `  K
)  <->  s  C_  ( Base `  L ) ) )
634adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  Ring )  ->  B  =  ( Base `  K )
)
645adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  Ring )  ->  B  =  ( Base `  L )
)
65 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  Ring )  ->  K  e.  Ring )
6663, 64, 43, 65, 24rngidpropdg 14023 . . . . . . . 8  |-  ( (
ph  /\  K  e.  Ring )  ->  ( 1r `  K )  =  ( 1r `  L ) )
6766eleq1d 2276 . . . . . . 7  |-  ( (
ph  /\  K  e.  Ring )  ->  ( ( 1r `  K )  e.  s  <->  ( 1r `  L )  e.  s ) )
6862, 67anbi12d 473 . . . . . 6  |-  ( (
ph  /\  K  e.  Ring )  ->  ( (
s  C_  ( Base `  K )  /\  ( 1r `  K )  e.  s )  <->  ( s  C_  ( Base `  L
)  /\  ( 1r `  L )  e.  s ) ) )
6959, 68anbi12d 473 . . . . 5  |-  ( (
ph  /\  K  e.  Ring )  ->  ( (
( K  e.  Ring  /\  ( Ks  s )  e. 
Ring )  /\  (
s  C_  ( Base `  K )  /\  ( 1r `  K )  e.  s ) )  <->  ( ( L  e.  Ring  /\  ( Ls  s )  e.  Ring )  /\  ( s  C_  ( Base `  L )  /\  ( 1r `  L
)  e.  s ) ) ) )
70 eqid 2207 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
71 eqid 2207 . . . . . 6  |-  ( 1r
`  K )  =  ( 1r `  K
)
7270, 71issubrg 14098 . . . . 5  |-  ( s  e.  (SubRing `  K
)  <->  ( ( K  e.  Ring  /\  ( Ks  s )  e.  Ring )  /\  ( s  C_  ( Base `  K )  /\  ( 1r `  K
)  e.  s ) ) )
73 eqid 2207 . . . . . 6  |-  ( Base `  L )  =  (
Base `  L )
74 eqid 2207 . . . . . 6  |-  ( 1r
`  L )  =  ( 1r `  L
)
7573, 74issubrg 14098 . . . . 5  |-  ( s  e.  (SubRing `  L
)  <->  ( ( L  e.  Ring  /\  ( Ls  s )  e.  Ring )  /\  ( s  C_  ( Base `  L )  /\  ( 1r `  L
)  e.  s ) ) )
7669, 72, 753bitr4g 223 . . . 4  |-  ( (
ph  /\  K  e.  Ring )  ->  ( s  e.  (SubRing `  K )  <->  s  e.  (SubRing `  L
) ) )
7776ex 115 . . 3  |-  ( ph  ->  ( K  e.  Ring  -> 
( s  e.  (SubRing `  K )  <->  s  e.  (SubRing `  L ) ) ) )
782, 9, 77pm5.21ndd 707 . 2  |-  ( ph  ->  ( s  e.  (SubRing `  K )  <->  s  e.  (SubRing `  L ) ) )
7978eqrdv 2205 1  |-  ( ph  ->  (SubRing `  K )  =  (SubRing `  L )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   _Vcvv 2776    i^i cin 3173    C_ wss 3174   ` cfv 5290  (class class class)co 5967   Basecbs 12947   ↾s cress 12948   +g cplusg 13024   .rcmulr 13025   1rcur 13836   Ringcrg 13873  SubRingcsubrg 14094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-mgp 13798  df-ur 13837  df-ring 13875  df-subrg 14096
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator