ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasnopn Unicode version

Theorem imasnopn 14846
Description: If a relation graph is open, then an image set of a singleton is also open. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Hypothesis
Ref Expression
imasnopn.1  |-  X  = 
U. J
Assertion
Ref Expression
imasnopn  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( R " { A }
)  e.  K )

Proof of Theorem imasnopn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfv 1552 . . . 4  |-  F/ y ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X ) )
2 nfcv 2349 . . . 4  |-  F/_ y
( R " { A } )
3 nfrab1 2687 . . . 4  |-  F/_ y { y  e.  U. K  |  <. A , 
y >.  e.  R }
4 txtop 14807 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  tX  K
)  e.  Top )
54adantr 276 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( J  tX  K )  e. 
Top )
6 simprl 529 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  R  e.  ( J  tX  K
) )
7 eqid 2206 . . . . . . . . . . . . 13  |-  U. ( J  tX  K )  = 
U. ( J  tX  K )
87eltopss 14556 . . . . . . . . . . . 12  |-  ( ( ( J  tX  K
)  e.  Top  /\  R  e.  ( J  tX  K ) )  ->  R  C_  U. ( J 
tX  K ) )
95, 6, 8syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  R  C_ 
U. ( J  tX  K ) )
10 imasnopn.1 . . . . . . . . . . . . 13  |-  X  = 
U. J
11 eqid 2206 . . . . . . . . . . . . 13  |-  U. K  =  U. K
1210, 11txuni 14810 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( X  X.  U. K )  =  U. ( J  tX  K ) )
1312adantr 276 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( X  X.  U. K )  =  U. ( J 
tX  K ) )
149, 13sseqtrrd 3236 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  R  C_  ( X  X.  U. K ) )
15 imass1 5066 . . . . . . . . . 10  |-  ( R 
C_  ( X  X.  U. K )  ->  ( R " { A }
)  C_  ( ( X  X.  U. K )
" { A }
) )
1614, 15syl 14 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( R " { A }
)  C_  ( ( X  X.  U. K )
" { A }
) )
17 xpimasn 5140 . . . . . . . . . 10  |-  ( A  e.  X  ->  (
( X  X.  U. K ) " { A } )  =  U. K )
1817ad2antll 491 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
( X  X.  U. K ) " { A } )  =  U. K )
1916, 18sseqtrd 3235 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( R " { A }
)  C_  U. K )
2019sseld 3196 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  ( R
" { A }
)  ->  y  e.  U. K ) )
2120pm4.71rd 394 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  ( R
" { A }
)  <->  ( y  e. 
U. K  /\  y  e.  ( R " { A } ) ) ) )
22 elimasng 5059 . . . . . . . . 9  |-  ( ( A  e.  X  /\  y  e.  _V )  ->  ( y  e.  ( R " { A } )  <->  <. A , 
y >.  e.  R ) )
2322elvd 2778 . . . . . . . 8  |-  ( A  e.  X  ->  (
y  e.  ( R
" { A }
)  <->  <. A ,  y
>.  e.  R ) )
2423ad2antll 491 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  ( R
" { A }
)  <->  <. A ,  y
>.  e.  R ) )
2524anbi2d 464 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
( y  e.  U. K  /\  y  e.  ( R " { A } ) )  <->  ( y  e.  U. K  /\  <. A ,  y >.  e.  R
) ) )
2621, 25bitrd 188 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  ( R
" { A }
)  <->  ( y  e. 
U. K  /\  <. A ,  y >.  e.  R
) ) )
27 rabid 2683 . . . . 5  |-  ( y  e.  { y  e. 
U. K  |  <. A ,  y >.  e.  R } 
<->  ( y  e.  U. K  /\  <. A ,  y
>.  e.  R ) )
2826, 27bitr4di 198 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  ( R
" { A }
)  <->  y  e.  {
y  e.  U. K  |  <. A ,  y
>.  e.  R } ) )
291, 2, 3, 28eqrd 3215 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( R " { A }
)  =  { y  e.  U. K  |  <. A ,  y >.  e.  R } )
30 eqid 2206 . . . 4  |-  ( y  e.  U. K  |->  <. A ,  y >. )  =  ( y  e. 
U. K  |->  <. A , 
y >. )
3130mptpreima 5185 . . 3  |-  ( `' ( y  e.  U. K  |->  <. A ,  y
>. ) " R )  =  { y  e. 
U. K  |  <. A ,  y >.  e.  R }
3229, 31eqtr4di 2257 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( R " { A }
)  =  ( `' ( y  e.  U. K  |->  <. A ,  y
>. ) " R ) )
3311toptopon 14565 . . . . . 6  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
3433biimpi 120 . . . . 5  |-  ( K  e.  Top  ->  K  e.  (TopOn `  U. K ) )
3534ad2antlr 489 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  K  e.  (TopOn `  U. K ) )
3610toptopon 14565 . . . . . . 7  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
3736biimpi 120 . . . . . 6  |-  ( J  e.  Top  ->  J  e.  (TopOn `  X )
)
3837ad2antrr 488 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  J  e.  (TopOn `  X )
)
39 simprr 531 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  A  e.  X )
4035, 38, 39cnmptc 14829 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  U. K  |->  A )  e.  ( K  Cn  J ) )
4135cnmptid 14828 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  U. K  |->  y )  e.  ( K  Cn  K ) )
4235, 40, 41cnmpt1t 14832 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  U. K  |-> 
<. A ,  y >.
)  e.  ( K  Cn  ( J  tX  K ) ) )
43 cnima 14767 . . 3  |-  ( ( ( y  e.  U. K  |->  <. A ,  y
>. )  e.  ( K  Cn  ( J  tX  K ) )  /\  R  e.  ( J  tX  K ) )  -> 
( `' ( y  e.  U. K  |->  <. A ,  y >. )
" R )  e.  K )
4442, 6, 43syl2anc 411 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( `' ( y  e. 
U. K  |->  <. A , 
y >. ) " R
)  e.  K )
4532, 44eqeltrd 2283 1  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( R " { A }
)  e.  K )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   {crab 2489   _Vcvv 2773    C_ wss 3170   {csn 3638   <.cop 3641   U.cuni 3856    |-> cmpt 4113    X. cxp 4681   `'ccnv 4682   "cima 4686   ` cfv 5280  (class class class)co 5957   Topctop 14544  TopOnctopon 14557    Cn ccn 14732    tX ctx 14799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-map 6750  df-topgen 13167  df-top 14545  df-topon 14558  df-bases 14590  df-cn 14735  df-cnp 14736  df-tx 14800
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator