| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imasnopn | Unicode version | ||
| Description: If a relation graph is open, then an image set of a singleton is also open. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
| Ref | Expression |
|---|---|
| imasnopn.1 |
|
| Ref | Expression |
|---|---|
| imasnopn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1550 |
. . . 4
| |
| 2 | nfcv 2347 |
. . . 4
| |
| 3 | nfrab1 2685 |
. . . 4
| |
| 4 | txtop 14674 |
. . . . . . . . . . . . 13
| |
| 5 | 4 | adantr 276 |
. . . . . . . . . . . 12
|
| 6 | simprl 529 |
. . . . . . . . . . . 12
| |
| 7 | eqid 2204 |
. . . . . . . . . . . . 13
| |
| 8 | 7 | eltopss 14423 |
. . . . . . . . . . . 12
|
| 9 | 5, 6, 8 | syl2anc 411 |
. . . . . . . . . . 11
|
| 10 | imasnopn.1 |
. . . . . . . . . . . . 13
| |
| 11 | eqid 2204 |
. . . . . . . . . . . . 13
| |
| 12 | 10, 11 | txuni 14677 |
. . . . . . . . . . . 12
|
| 13 | 12 | adantr 276 |
. . . . . . . . . . 11
|
| 14 | 9, 13 | sseqtrrd 3231 |
. . . . . . . . . 10
|
| 15 | imass1 5056 |
. . . . . . . . . 10
| |
| 16 | 14, 15 | syl 14 |
. . . . . . . . 9
|
| 17 | xpimasn 5130 |
. . . . . . . . . 10
| |
| 18 | 17 | ad2antll 491 |
. . . . . . . . 9
|
| 19 | 16, 18 | sseqtrd 3230 |
. . . . . . . 8
|
| 20 | 19 | sseld 3191 |
. . . . . . 7
|
| 21 | 20 | pm4.71rd 394 |
. . . . . 6
|
| 22 | elimasng 5049 |
. . . . . . . . 9
| |
| 23 | 22 | elvd 2776 |
. . . . . . . 8
|
| 24 | 23 | ad2antll 491 |
. . . . . . 7
|
| 25 | 24 | anbi2d 464 |
. . . . . 6
|
| 26 | 21, 25 | bitrd 188 |
. . . . 5
|
| 27 | rabid 2681 |
. . . . 5
| |
| 28 | 26, 27 | bitr4di 198 |
. . . 4
|
| 29 | 1, 2, 3, 28 | eqrd 3210 |
. . 3
|
| 30 | eqid 2204 |
. . . 4
| |
| 31 | 30 | mptpreima 5175 |
. . 3
|
| 32 | 29, 31 | eqtr4di 2255 |
. 2
|
| 33 | 11 | toptopon 14432 |
. . . . . 6
|
| 34 | 33 | biimpi 120 |
. . . . 5
|
| 35 | 34 | ad2antlr 489 |
. . . 4
|
| 36 | 10 | toptopon 14432 |
. . . . . . 7
|
| 37 | 36 | biimpi 120 |
. . . . . 6
|
| 38 | 37 | ad2antrr 488 |
. . . . 5
|
| 39 | simprr 531 |
. . . . 5
| |
| 40 | 35, 38, 39 | cnmptc 14696 |
. . . 4
|
| 41 | 35 | cnmptid 14695 |
. . . 4
|
| 42 | 35, 40, 41 | cnmpt1t 14699 |
. . 3
|
| 43 | cnima 14634 |
. . 3
| |
| 44 | 42, 6, 43 | syl2anc 411 |
. 2
|
| 45 | 32, 44 | eqeltrd 2281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-map 6736 df-topgen 13034 df-top 14412 df-topon 14425 df-bases 14457 df-cn 14602 df-cnp 14603 df-tx 14667 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |