Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imasnopn | Unicode version |
Description: If a relation graph is open, then an image set of a singleton is also open. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
Ref | Expression |
---|---|
imasnopn.1 |
Ref | Expression |
---|---|
imasnopn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1526 | . . . 4 | |
2 | nfcv 2317 | . . . 4 | |
3 | nfrab1 2654 | . . . 4 | |
4 | txtop 13329 | . . . . . . . . . . . . 13 | |
5 | 4 | adantr 276 | . . . . . . . . . . . 12 |
6 | simprl 529 | . . . . . . . . . . . 12 | |
7 | eqid 2175 | . . . . . . . . . . . . 13 | |
8 | 7 | eltopss 13076 | . . . . . . . . . . . 12 |
9 | 5, 6, 8 | syl2anc 411 | . . . . . . . . . . 11 |
10 | imasnopn.1 | . . . . . . . . . . . . 13 | |
11 | eqid 2175 | . . . . . . . . . . . . 13 | |
12 | 10, 11 | txuni 13332 | . . . . . . . . . . . 12 |
13 | 12 | adantr 276 | . . . . . . . . . . 11 |
14 | 9, 13 | sseqtrrd 3192 | . . . . . . . . . 10 |
15 | imass1 4996 | . . . . . . . . . 10 | |
16 | 14, 15 | syl 14 | . . . . . . . . 9 |
17 | xpimasn 5069 | . . . . . . . . . 10 | |
18 | 17 | ad2antll 491 | . . . . . . . . 9 |
19 | 16, 18 | sseqtrd 3191 | . . . . . . . 8 |
20 | 19 | sseld 3152 | . . . . . . 7 |
21 | 20 | pm4.71rd 394 | . . . . . 6 |
22 | elimasng 4989 | . . . . . . . . 9 | |
23 | 22 | elvd 2740 | . . . . . . . 8 |
24 | 23 | ad2antll 491 | . . . . . . 7 |
25 | 24 | anbi2d 464 | . . . . . 6 |
26 | 21, 25 | bitrd 188 | . . . . 5 |
27 | rabid 2650 | . . . . 5 | |
28 | 26, 27 | bitr4di 198 | . . . 4 |
29 | 1, 2, 3, 28 | eqrd 3171 | . . 3 |
30 | eqid 2175 | . . . 4 | |
31 | 30 | mptpreima 5114 | . . 3 |
32 | 29, 31 | eqtr4di 2226 | . 2 |
33 | 11 | toptopon 13085 | . . . . . 6 TopOn |
34 | 33 | biimpi 120 | . . . . 5 TopOn |
35 | 34 | ad2antlr 489 | . . . 4 TopOn |
36 | 10 | toptopon 13085 | . . . . . . 7 TopOn |
37 | 36 | biimpi 120 | . . . . . 6 TopOn |
38 | 37 | ad2antrr 488 | . . . . 5 TopOn |
39 | simprr 531 | . . . . 5 | |
40 | 35, 38, 39 | cnmptc 13351 | . . . 4 |
41 | 35 | cnmptid 13350 | . . . 4 |
42 | 35, 40, 41 | cnmpt1t 13354 | . . 3 |
43 | cnima 13289 | . . 3 | |
44 | 42, 6, 43 | syl2anc 411 | . 2 |
45 | 32, 44 | eqeltrd 2252 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wcel 2146 crab 2457 cvv 2735 wss 3127 csn 3589 cop 3592 cuni 3805 cmpt 4059 cxp 4618 ccnv 4619 cima 4623 cfv 5208 (class class class)co 5865 ctop 13064 TopOnctopon 13077 ccn 13254 ctx 13321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-map 6640 df-topgen 12629 df-top 13065 df-topon 13078 df-bases 13110 df-cn 13257 df-cnp 13258 df-tx 13322 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |