Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imasnopn | Unicode version |
Description: If a relation graph is open, then an image set of a singleton is also open. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
Ref | Expression |
---|---|
imasnopn.1 |
Ref | Expression |
---|---|
imasnopn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . . . 4 | |
2 | nfcv 2312 | . . . 4 | |
3 | nfrab1 2649 | . . . 4 | |
4 | txtop 13054 | . . . . . . . . . . . . 13 | |
5 | 4 | adantr 274 | . . . . . . . . . . . 12 |
6 | simprl 526 | . . . . . . . . . . . 12 | |
7 | eqid 2170 | . . . . . . . . . . . . 13 | |
8 | 7 | eltopss 12801 | . . . . . . . . . . . 12 |
9 | 5, 6, 8 | syl2anc 409 | . . . . . . . . . . 11 |
10 | imasnopn.1 | . . . . . . . . . . . . 13 | |
11 | eqid 2170 | . . . . . . . . . . . . 13 | |
12 | 10, 11 | txuni 13057 | . . . . . . . . . . . 12 |
13 | 12 | adantr 274 | . . . . . . . . . . 11 |
14 | 9, 13 | sseqtrrd 3186 | . . . . . . . . . 10 |
15 | imass1 4986 | . . . . . . . . . 10 | |
16 | 14, 15 | syl 14 | . . . . . . . . 9 |
17 | xpimasn 5059 | . . . . . . . . . 10 | |
18 | 17 | ad2antll 488 | . . . . . . . . 9 |
19 | 16, 18 | sseqtrd 3185 | . . . . . . . 8 |
20 | 19 | sseld 3146 | . . . . . . 7 |
21 | 20 | pm4.71rd 392 | . . . . . 6 |
22 | elimasng 4979 | . . . . . . . . 9 | |
23 | 22 | elvd 2735 | . . . . . . . 8 |
24 | 23 | ad2antll 488 | . . . . . . 7 |
25 | 24 | anbi2d 461 | . . . . . 6 |
26 | 21, 25 | bitrd 187 | . . . . 5 |
27 | rabid 2645 | . . . . 5 | |
28 | 26, 27 | bitr4di 197 | . . . 4 |
29 | 1, 2, 3, 28 | eqrd 3165 | . . 3 |
30 | eqid 2170 | . . . 4 | |
31 | 30 | mptpreima 5104 | . . 3 |
32 | 29, 31 | eqtr4di 2221 | . 2 |
33 | 11 | toptopon 12810 | . . . . . 6 TopOn |
34 | 33 | biimpi 119 | . . . . 5 TopOn |
35 | 34 | ad2antlr 486 | . . . 4 TopOn |
36 | 10 | toptopon 12810 | . . . . . . 7 TopOn |
37 | 36 | biimpi 119 | . . . . . 6 TopOn |
38 | 37 | ad2antrr 485 | . . . . 5 TopOn |
39 | simprr 527 | . . . . 5 | |
40 | 35, 38, 39 | cnmptc 13076 | . . . 4 |
41 | 35 | cnmptid 13075 | . . . 4 |
42 | 35, 40, 41 | cnmpt1t 13079 | . . 3 |
43 | cnima 13014 | . . 3 | |
44 | 42, 6, 43 | syl2anc 409 | . 2 |
45 | 32, 44 | eqeltrd 2247 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 crab 2452 cvv 2730 wss 3121 csn 3583 cop 3586 cuni 3796 cmpt 4050 cxp 4609 ccnv 4610 cima 4614 cfv 5198 (class class class)co 5853 ctop 12789 TopOnctopon 12802 ccn 12979 ctx 13046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-map 6628 df-topgen 12600 df-top 12790 df-topon 12803 df-bases 12835 df-cn 12982 df-cnp 12983 df-tx 13047 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |