ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasnopn Unicode version

Theorem imasnopn 14967
Description: If a relation graph is open, then an image set of a singleton is also open. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Hypothesis
Ref Expression
imasnopn.1  |-  X  = 
U. J
Assertion
Ref Expression
imasnopn  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( R " { A }
)  e.  K )

Proof of Theorem imasnopn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfv 1574 . . . 4  |-  F/ y ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X ) )
2 nfcv 2372 . . . 4  |-  F/_ y
( R " { A } )
3 nfrab1 2711 . . . 4  |-  F/_ y { y  e.  U. K  |  <. A , 
y >.  e.  R }
4 txtop 14928 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  tX  K
)  e.  Top )
54adantr 276 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( J  tX  K )  e. 
Top )
6 simprl 529 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  R  e.  ( J  tX  K
) )
7 eqid 2229 . . . . . . . . . . . . 13  |-  U. ( J  tX  K )  = 
U. ( J  tX  K )
87eltopss 14677 . . . . . . . . . . . 12  |-  ( ( ( J  tX  K
)  e.  Top  /\  R  e.  ( J  tX  K ) )  ->  R  C_  U. ( J 
tX  K ) )
95, 6, 8syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  R  C_ 
U. ( J  tX  K ) )
10 imasnopn.1 . . . . . . . . . . . . 13  |-  X  = 
U. J
11 eqid 2229 . . . . . . . . . . . . 13  |-  U. K  =  U. K
1210, 11txuni 14931 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( X  X.  U. K )  =  U. ( J  tX  K ) )
1312adantr 276 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( X  X.  U. K )  =  U. ( J 
tX  K ) )
149, 13sseqtrrd 3263 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  R  C_  ( X  X.  U. K ) )
15 imass1 5102 . . . . . . . . . 10  |-  ( R 
C_  ( X  X.  U. K )  ->  ( R " { A }
)  C_  ( ( X  X.  U. K )
" { A }
) )
1614, 15syl 14 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( R " { A }
)  C_  ( ( X  X.  U. K )
" { A }
) )
17 xpimasn 5176 . . . . . . . . . 10  |-  ( A  e.  X  ->  (
( X  X.  U. K ) " { A } )  =  U. K )
1817ad2antll 491 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
( X  X.  U. K ) " { A } )  =  U. K )
1916, 18sseqtrd 3262 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( R " { A }
)  C_  U. K )
2019sseld 3223 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  ( R
" { A }
)  ->  y  e.  U. K ) )
2120pm4.71rd 394 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  ( R
" { A }
)  <->  ( y  e. 
U. K  /\  y  e.  ( R " { A } ) ) ) )
22 elimasng 5095 . . . . . . . . 9  |-  ( ( A  e.  X  /\  y  e.  _V )  ->  ( y  e.  ( R " { A } )  <->  <. A , 
y >.  e.  R ) )
2322elvd 2804 . . . . . . . 8  |-  ( A  e.  X  ->  (
y  e.  ( R
" { A }
)  <->  <. A ,  y
>.  e.  R ) )
2423ad2antll 491 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  ( R
" { A }
)  <->  <. A ,  y
>.  e.  R ) )
2524anbi2d 464 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
( y  e.  U. K  /\  y  e.  ( R " { A } ) )  <->  ( y  e.  U. K  /\  <. A ,  y >.  e.  R
) ) )
2621, 25bitrd 188 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  ( R
" { A }
)  <->  ( y  e. 
U. K  /\  <. A ,  y >.  e.  R
) ) )
27 rabid 2707 . . . . 5  |-  ( y  e.  { y  e. 
U. K  |  <. A ,  y >.  e.  R } 
<->  ( y  e.  U. K  /\  <. A ,  y
>.  e.  R ) )
2826, 27bitr4di 198 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  ( R
" { A }
)  <->  y  e.  {
y  e.  U. K  |  <. A ,  y
>.  e.  R } ) )
291, 2, 3, 28eqrd 3242 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( R " { A }
)  =  { y  e.  U. K  |  <. A ,  y >.  e.  R } )
30 eqid 2229 . . . 4  |-  ( y  e.  U. K  |->  <. A ,  y >. )  =  ( y  e. 
U. K  |->  <. A , 
y >. )
3130mptpreima 5221 . . 3  |-  ( `' ( y  e.  U. K  |->  <. A ,  y
>. ) " R )  =  { y  e. 
U. K  |  <. A ,  y >.  e.  R }
3229, 31eqtr4di 2280 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( R " { A }
)  =  ( `' ( y  e.  U. K  |->  <. A ,  y
>. ) " R ) )
3311toptopon 14686 . . . . . 6  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
3433biimpi 120 . . . . 5  |-  ( K  e.  Top  ->  K  e.  (TopOn `  U. K ) )
3534ad2antlr 489 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  K  e.  (TopOn `  U. K ) )
3610toptopon 14686 . . . . . . 7  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
3736biimpi 120 . . . . . 6  |-  ( J  e.  Top  ->  J  e.  (TopOn `  X )
)
3837ad2antrr 488 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  J  e.  (TopOn `  X )
)
39 simprr 531 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  A  e.  X )
4035, 38, 39cnmptc 14950 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  U. K  |->  A )  e.  ( K  Cn  J ) )
4135cnmptid 14949 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  U. K  |->  y )  e.  ( K  Cn  K ) )
4235, 40, 41cnmpt1t 14953 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  U. K  |-> 
<. A ,  y >.
)  e.  ( K  Cn  ( J  tX  K ) ) )
43 cnima 14888 . . 3  |-  ( ( ( y  e.  U. K  |->  <. A ,  y
>. )  e.  ( K  Cn  ( J  tX  K ) )  /\  R  e.  ( J  tX  K ) )  -> 
( `' ( y  e.  U. K  |->  <. A ,  y >. )
" R )  e.  K )
4442, 6, 43syl2anc 411 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( `' ( y  e. 
U. K  |->  <. A , 
y >. ) " R
)  e.  K )
4532, 44eqeltrd 2306 1  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( R " { A }
)  e.  K )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   {crab 2512   _Vcvv 2799    C_ wss 3197   {csn 3666   <.cop 3669   U.cuni 3887    |-> cmpt 4144    X. cxp 4716   `'ccnv 4717   "cima 4721   ` cfv 5317  (class class class)co 6000   Topctop 14665  TopOnctopon 14678    Cn ccn 14853    tX ctx 14920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-map 6795  df-topgen 13288  df-top 14666  df-topon 14679  df-bases 14711  df-cn 14856  df-cnp 14857  df-tx 14921
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator