| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > imasnopn | Unicode version | ||
| Description: If a relation graph is open, then an image set of a singleton is also open. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.) | 
| Ref | Expression | 
|---|---|
| imasnopn.1 | 
 | 
| Ref | Expression | 
|---|---|
| imasnopn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1542 | 
. . . 4
 | |
| 2 | nfcv 2339 | 
. . . 4
 | |
| 3 | nfrab1 2677 | 
. . . 4
 | |
| 4 | txtop 14496 | 
. . . . . . . . . . . . 13
 | |
| 5 | 4 | adantr 276 | 
. . . . . . . . . . . 12
 | 
| 6 | simprl 529 | 
. . . . . . . . . . . 12
 | |
| 7 | eqid 2196 | 
. . . . . . . . . . . . 13
 | |
| 8 | 7 | eltopss 14245 | 
. . . . . . . . . . . 12
 | 
| 9 | 5, 6, 8 | syl2anc 411 | 
. . . . . . . . . . 11
 | 
| 10 | imasnopn.1 | 
. . . . . . . . . . . . 13
 | |
| 11 | eqid 2196 | 
. . . . . . . . . . . . 13
 | |
| 12 | 10, 11 | txuni 14499 | 
. . . . . . . . . . . 12
 | 
| 13 | 12 | adantr 276 | 
. . . . . . . . . . 11
 | 
| 14 | 9, 13 | sseqtrrd 3222 | 
. . . . . . . . . 10
 | 
| 15 | imass1 5044 | 
. . . . . . . . . 10
 | |
| 16 | 14, 15 | syl 14 | 
. . . . . . . . 9
 | 
| 17 | xpimasn 5118 | 
. . . . . . . . . 10
 | |
| 18 | 17 | ad2antll 491 | 
. . . . . . . . 9
 | 
| 19 | 16, 18 | sseqtrd 3221 | 
. . . . . . . 8
 | 
| 20 | 19 | sseld 3182 | 
. . . . . . 7
 | 
| 21 | 20 | pm4.71rd 394 | 
. . . . . 6
 | 
| 22 | elimasng 5037 | 
. . . . . . . . 9
 | |
| 23 | 22 | elvd 2768 | 
. . . . . . . 8
 | 
| 24 | 23 | ad2antll 491 | 
. . . . . . 7
 | 
| 25 | 24 | anbi2d 464 | 
. . . . . 6
 | 
| 26 | 21, 25 | bitrd 188 | 
. . . . 5
 | 
| 27 | rabid 2673 | 
. . . . 5
 | |
| 28 | 26, 27 | bitr4di 198 | 
. . . 4
 | 
| 29 | 1, 2, 3, 28 | eqrd 3201 | 
. . 3
 | 
| 30 | eqid 2196 | 
. . . 4
 | |
| 31 | 30 | mptpreima 5163 | 
. . 3
 | 
| 32 | 29, 31 | eqtr4di 2247 | 
. 2
 | 
| 33 | 11 | toptopon 14254 | 
. . . . . 6
 | 
| 34 | 33 | biimpi 120 | 
. . . . 5
 | 
| 35 | 34 | ad2antlr 489 | 
. . . 4
 | 
| 36 | 10 | toptopon 14254 | 
. . . . . . 7
 | 
| 37 | 36 | biimpi 120 | 
. . . . . 6
 | 
| 38 | 37 | ad2antrr 488 | 
. . . . 5
 | 
| 39 | simprr 531 | 
. . . . 5
 | |
| 40 | 35, 38, 39 | cnmptc 14518 | 
. . . 4
 | 
| 41 | 35 | cnmptid 14517 | 
. . . 4
 | 
| 42 | 35, 40, 41 | cnmpt1t 14521 | 
. . 3
 | 
| 43 | cnima 14456 | 
. . 3
 | |
| 44 | 42, 6, 43 | syl2anc 411 | 
. 2
 | 
| 45 | 32, 44 | eqeltrd 2273 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-map 6709 df-topgen 12931 df-top 14234 df-topon 14247 df-bases 14279 df-cn 14424 df-cnp 14425 df-tx 14489 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |