Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imasnopn | Unicode version |
Description: If a relation graph is open, then an image set of a singleton is also open. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
Ref | Expression |
---|---|
imasnopn.1 |
Ref | Expression |
---|---|
imasnopn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . . . 4 | |
2 | nfcv 2308 | . . . 4 | |
3 | nfrab1 2645 | . . . 4 | |
4 | txtop 12900 | . . . . . . . . . . . . 13 | |
5 | 4 | adantr 274 | . . . . . . . . . . . 12 |
6 | simprl 521 | . . . . . . . . . . . 12 | |
7 | eqid 2165 | . . . . . . . . . . . . 13 | |
8 | 7 | eltopss 12647 | . . . . . . . . . . . 12 |
9 | 5, 6, 8 | syl2anc 409 | . . . . . . . . . . 11 |
10 | imasnopn.1 | . . . . . . . . . . . . 13 | |
11 | eqid 2165 | . . . . . . . . . . . . 13 | |
12 | 10, 11 | txuni 12903 | . . . . . . . . . . . 12 |
13 | 12 | adantr 274 | . . . . . . . . . . 11 |
14 | 9, 13 | sseqtrrd 3181 | . . . . . . . . . 10 |
15 | imass1 4979 | . . . . . . . . . 10 | |
16 | 14, 15 | syl 14 | . . . . . . . . 9 |
17 | xpimasn 5052 | . . . . . . . . . 10 | |
18 | 17 | ad2antll 483 | . . . . . . . . 9 |
19 | 16, 18 | sseqtrd 3180 | . . . . . . . 8 |
20 | 19 | sseld 3141 | . . . . . . 7 |
21 | 20 | pm4.71rd 392 | . . . . . 6 |
22 | elimasng 4972 | . . . . . . . . 9 | |
23 | 22 | elvd 2731 | . . . . . . . 8 |
24 | 23 | ad2antll 483 | . . . . . . 7 |
25 | 24 | anbi2d 460 | . . . . . 6 |
26 | 21, 25 | bitrd 187 | . . . . 5 |
27 | rabid 2641 | . . . . 5 | |
28 | 26, 27 | bitr4di 197 | . . . 4 |
29 | 1, 2, 3, 28 | eqrd 3160 | . . 3 |
30 | eqid 2165 | . . . 4 | |
31 | 30 | mptpreima 5097 | . . 3 |
32 | 29, 31 | eqtr4di 2217 | . 2 |
33 | 11 | toptopon 12656 | . . . . . 6 TopOn |
34 | 33 | biimpi 119 | . . . . 5 TopOn |
35 | 34 | ad2antlr 481 | . . . 4 TopOn |
36 | 10 | toptopon 12656 | . . . . . . 7 TopOn |
37 | 36 | biimpi 119 | . . . . . 6 TopOn |
38 | 37 | ad2antrr 480 | . . . . 5 TopOn |
39 | simprr 522 | . . . . 5 | |
40 | 35, 38, 39 | cnmptc 12922 | . . . 4 |
41 | 35 | cnmptid 12921 | . . . 4 |
42 | 35, 40, 41 | cnmpt1t 12925 | . . 3 |
43 | cnima 12860 | . . 3 | |
44 | 42, 6, 43 | syl2anc 409 | . 2 |
45 | 32, 44 | eqeltrd 2243 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 crab 2448 cvv 2726 wss 3116 csn 3576 cop 3579 cuni 3789 cmpt 4043 cxp 4602 ccnv 4603 cima 4607 cfv 5188 (class class class)co 5842 ctop 12635 TopOnctopon 12648 ccn 12825 ctx 12892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-topgen 12577 df-top 12636 df-topon 12649 df-bases 12681 df-cn 12828 df-cnp 12829 df-tx 12893 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |