| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imasnopn | Unicode version | ||
| Description: If a relation graph is open, then an image set of a singleton is also open. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
| Ref | Expression |
|---|---|
| imasnopn.1 |
|
| Ref | Expression |
|---|---|
| imasnopn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 |
. . . 4
| |
| 2 | nfcv 2349 |
. . . 4
| |
| 3 | nfrab1 2687 |
. . . 4
| |
| 4 | txtop 14807 |
. . . . . . . . . . . . 13
| |
| 5 | 4 | adantr 276 |
. . . . . . . . . . . 12
|
| 6 | simprl 529 |
. . . . . . . . . . . 12
| |
| 7 | eqid 2206 |
. . . . . . . . . . . . 13
| |
| 8 | 7 | eltopss 14556 |
. . . . . . . . . . . 12
|
| 9 | 5, 6, 8 | syl2anc 411 |
. . . . . . . . . . 11
|
| 10 | imasnopn.1 |
. . . . . . . . . . . . 13
| |
| 11 | eqid 2206 |
. . . . . . . . . . . . 13
| |
| 12 | 10, 11 | txuni 14810 |
. . . . . . . . . . . 12
|
| 13 | 12 | adantr 276 |
. . . . . . . . . . 11
|
| 14 | 9, 13 | sseqtrrd 3236 |
. . . . . . . . . 10
|
| 15 | imass1 5066 |
. . . . . . . . . 10
| |
| 16 | 14, 15 | syl 14 |
. . . . . . . . 9
|
| 17 | xpimasn 5140 |
. . . . . . . . . 10
| |
| 18 | 17 | ad2antll 491 |
. . . . . . . . 9
|
| 19 | 16, 18 | sseqtrd 3235 |
. . . . . . . 8
|
| 20 | 19 | sseld 3196 |
. . . . . . 7
|
| 21 | 20 | pm4.71rd 394 |
. . . . . 6
|
| 22 | elimasng 5059 |
. . . . . . . . 9
| |
| 23 | 22 | elvd 2778 |
. . . . . . . 8
|
| 24 | 23 | ad2antll 491 |
. . . . . . 7
|
| 25 | 24 | anbi2d 464 |
. . . . . 6
|
| 26 | 21, 25 | bitrd 188 |
. . . . 5
|
| 27 | rabid 2683 |
. . . . 5
| |
| 28 | 26, 27 | bitr4di 198 |
. . . 4
|
| 29 | 1, 2, 3, 28 | eqrd 3215 |
. . 3
|
| 30 | eqid 2206 |
. . . 4
| |
| 31 | 30 | mptpreima 5185 |
. . 3
|
| 32 | 29, 31 | eqtr4di 2257 |
. 2
|
| 33 | 11 | toptopon 14565 |
. . . . . 6
|
| 34 | 33 | biimpi 120 |
. . . . 5
|
| 35 | 34 | ad2antlr 489 |
. . . 4
|
| 36 | 10 | toptopon 14565 |
. . . . . . 7
|
| 37 | 36 | biimpi 120 |
. . . . . 6
|
| 38 | 37 | ad2antrr 488 |
. . . . 5
|
| 39 | simprr 531 |
. . . . 5
| |
| 40 | 35, 38, 39 | cnmptc 14829 |
. . . 4
|
| 41 | 35 | cnmptid 14828 |
. . . 4
|
| 42 | 35, 40, 41 | cnmpt1t 14832 |
. . 3
|
| 43 | cnima 14767 |
. . 3
| |
| 44 | 42, 6, 43 | syl2anc 411 |
. 2
|
| 45 | 32, 44 | eqeltrd 2283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-map 6750 df-topgen 13167 df-top 14545 df-topon 14558 df-bases 14590 df-cn 14735 df-cnp 14736 df-tx 14800 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |