ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasnopn Unicode version

Theorem imasnopn 14478
Description: If a relation graph is open, then an image set of a singleton is also open. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Hypothesis
Ref Expression
imasnopn.1  |-  X  = 
U. J
Assertion
Ref Expression
imasnopn  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( R " { A }
)  e.  K )

Proof of Theorem imasnopn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfv 1539 . . . 4  |-  F/ y ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X ) )
2 nfcv 2336 . . . 4  |-  F/_ y
( R " { A } )
3 nfrab1 2674 . . . 4  |-  F/_ y { y  e.  U. K  |  <. A , 
y >.  e.  R }
4 txtop 14439 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  tX  K
)  e.  Top )
54adantr 276 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( J  tX  K )  e. 
Top )
6 simprl 529 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  R  e.  ( J  tX  K
) )
7 eqid 2193 . . . . . . . . . . . . 13  |-  U. ( J  tX  K )  = 
U. ( J  tX  K )
87eltopss 14188 . . . . . . . . . . . 12  |-  ( ( ( J  tX  K
)  e.  Top  /\  R  e.  ( J  tX  K ) )  ->  R  C_  U. ( J 
tX  K ) )
95, 6, 8syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  R  C_ 
U. ( J  tX  K ) )
10 imasnopn.1 . . . . . . . . . . . . 13  |-  X  = 
U. J
11 eqid 2193 . . . . . . . . . . . . 13  |-  U. K  =  U. K
1210, 11txuni 14442 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( X  X.  U. K )  =  U. ( J  tX  K ) )
1312adantr 276 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( X  X.  U. K )  =  U. ( J 
tX  K ) )
149, 13sseqtrrd 3219 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  R  C_  ( X  X.  U. K ) )
15 imass1 5041 . . . . . . . . . 10  |-  ( R 
C_  ( X  X.  U. K )  ->  ( R " { A }
)  C_  ( ( X  X.  U. K )
" { A }
) )
1614, 15syl 14 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( R " { A }
)  C_  ( ( X  X.  U. K )
" { A }
) )
17 xpimasn 5115 . . . . . . . . . 10  |-  ( A  e.  X  ->  (
( X  X.  U. K ) " { A } )  =  U. K )
1817ad2antll 491 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
( X  X.  U. K ) " { A } )  =  U. K )
1916, 18sseqtrd 3218 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( R " { A }
)  C_  U. K )
2019sseld 3179 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  ( R
" { A }
)  ->  y  e.  U. K ) )
2120pm4.71rd 394 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  ( R
" { A }
)  <->  ( y  e. 
U. K  /\  y  e.  ( R " { A } ) ) ) )
22 elimasng 5034 . . . . . . . . 9  |-  ( ( A  e.  X  /\  y  e.  _V )  ->  ( y  e.  ( R " { A } )  <->  <. A , 
y >.  e.  R ) )
2322elvd 2765 . . . . . . . 8  |-  ( A  e.  X  ->  (
y  e.  ( R
" { A }
)  <->  <. A ,  y
>.  e.  R ) )
2423ad2antll 491 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  ( R
" { A }
)  <->  <. A ,  y
>.  e.  R ) )
2524anbi2d 464 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
( y  e.  U. K  /\  y  e.  ( R " { A } ) )  <->  ( y  e.  U. K  /\  <. A ,  y >.  e.  R
) ) )
2621, 25bitrd 188 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  ( R
" { A }
)  <->  ( y  e. 
U. K  /\  <. A ,  y >.  e.  R
) ) )
27 rabid 2670 . . . . 5  |-  ( y  e.  { y  e. 
U. K  |  <. A ,  y >.  e.  R } 
<->  ( y  e.  U. K  /\  <. A ,  y
>.  e.  R ) )
2826, 27bitr4di 198 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  ( R
" { A }
)  <->  y  e.  {
y  e.  U. K  |  <. A ,  y
>.  e.  R } ) )
291, 2, 3, 28eqrd 3198 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( R " { A }
)  =  { y  e.  U. K  |  <. A ,  y >.  e.  R } )
30 eqid 2193 . . . 4  |-  ( y  e.  U. K  |->  <. A ,  y >. )  =  ( y  e. 
U. K  |->  <. A , 
y >. )
3130mptpreima 5160 . . 3  |-  ( `' ( y  e.  U. K  |->  <. A ,  y
>. ) " R )  =  { y  e. 
U. K  |  <. A ,  y >.  e.  R }
3229, 31eqtr4di 2244 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( R " { A }
)  =  ( `' ( y  e.  U. K  |->  <. A ,  y
>. ) " R ) )
3311toptopon 14197 . . . . . 6  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
3433biimpi 120 . . . . 5  |-  ( K  e.  Top  ->  K  e.  (TopOn `  U. K ) )
3534ad2antlr 489 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  K  e.  (TopOn `  U. K ) )
3610toptopon 14197 . . . . . . 7  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
3736biimpi 120 . . . . . 6  |-  ( J  e.  Top  ->  J  e.  (TopOn `  X )
)
3837ad2antrr 488 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  J  e.  (TopOn `  X )
)
39 simprr 531 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  A  e.  X )
4035, 38, 39cnmptc 14461 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  U. K  |->  A )  e.  ( K  Cn  J ) )
4135cnmptid 14460 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  U. K  |->  y )  e.  ( K  Cn  K ) )
4235, 40, 41cnmpt1t 14464 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  (
y  e.  U. K  |-> 
<. A ,  y >.
)  e.  ( K  Cn  ( J  tX  K ) ) )
43 cnima 14399 . . 3  |-  ( ( ( y  e.  U. K  |->  <. A ,  y
>. )  e.  ( K  Cn  ( J  tX  K ) )  /\  R  e.  ( J  tX  K ) )  -> 
( `' ( y  e.  U. K  |->  <. A ,  y >. )
" R )  e.  K )
4442, 6, 43syl2anc 411 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( `' ( y  e. 
U. K  |->  <. A , 
y >. ) " R
)  e.  K )
4532, 44eqeltrd 2270 1  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X
) )  ->  ( R " { A }
)  e.  K )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {crab 2476   _Vcvv 2760    C_ wss 3154   {csn 3619   <.cop 3622   U.cuni 3836    |-> cmpt 4091    X. cxp 4658   `'ccnv 4659   "cima 4663   ` cfv 5255  (class class class)co 5919   Topctop 14176  TopOnctopon 14189    Cn ccn 14364    tX ctx 14431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-topgen 12874  df-top 14177  df-topon 14190  df-bases 14222  df-cn 14367  df-cnp 14368  df-tx 14432
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator