| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elv | Unicode version | ||
| Description: Technical lemma used to
shorten proofs.  If a proposition is implied by
        | 
| Ref | Expression | 
|---|---|
| elv.1 | 
 | 
| Ref | Expression | 
|---|---|
| elv | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vex 2766 | 
. 2
 | |
| 2 | elv.1 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 | 
| This theorem is referenced by: xpiindim 4803 disjxp1 6294 ixpiinm 6783 ixpsnf1o 6795 iunfidisj 7012 ssfii 7040 fifo 7046 dcfi 7047 omp1eomlem 7160 exmidomniim 7207 bcval5 10855 rexfiuz 11154 fsum2dlemstep 11599 fsumcnv 11602 fisumcom2 11603 fsumconst 11619 modfsummodlemstep 11622 fsumabs 11630 fprodcllemf 11778 fprod2dlemstep 11787 fprodcnv 11790 fprodcom2fi 11791 fprodmodd 11806 4sqleminfi 12566 ennnfonelemim 12641 topnfn 12915 ptex 12935 xpsff1o 12992 ismgm 13000 issgrp 13046 ismnddef 13059 isnsg 13332 fnmgp 13478 isrng 13490 isring 13556 dfrhm2 13710 znval 14192 iuncld 14351 txbas 14494 txdis 14513 xmetunirn 14594 xmettxlem 14745 xmettx 14746 gausslemma2dlem1a 15299 pw1nct 15647 | 
| Copyright terms: Public domain | W3C validator |