![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elv | Unicode version |
Description: Technical lemma used to
shorten proofs. If a proposition is implied by
![]() ![]() ![]() |
Ref | Expression |
---|---|
elv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elv |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2625 |
. 2
![]() ![]() ![]() ![]() | |
2 | elv.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-v 2624 |
This theorem is referenced by: disjxp1 6017 ixpiinm 6497 ixpsnf1o 6509 iunfidisj 6711 fsum2dlemstep 10891 fsumcnv 10894 fisumcom2 10895 fsumconst 10911 modfsummodlemstep 10914 fsumabs 10922 topnfn 11720 iuncld 11878 |
Copyright terms: Public domain | W3C validator |