![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elv | Unicode version |
Description: Technical lemma used to
shorten proofs. If a proposition is implied by
![]() ![]() ![]() |
Ref | Expression |
---|---|
elv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elv |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2763 |
. 2
![]() ![]() ![]() ![]() | |
2 | elv.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 |
This theorem is referenced by: xpiindim 4799 disjxp1 6289 ixpiinm 6778 ixpsnf1o 6790 iunfidisj 7005 ssfii 7033 fifo 7039 dcfi 7040 omp1eomlem 7153 exmidomniim 7200 bcval5 10834 rexfiuz 11133 fsum2dlemstep 11577 fsumcnv 11580 fisumcom2 11581 fsumconst 11597 modfsummodlemstep 11600 fsumabs 11608 fprodcllemf 11756 fprod2dlemstep 11765 fprodcnv 11768 fprodcom2fi 11769 fprodmodd 11784 4sqleminfi 12535 ennnfonelemim 12581 topnfn 12855 ptex 12875 xpsff1o 12932 ismgm 12940 issgrp 12986 ismnddef 12999 isnsg 13272 fnmgp 13418 isrng 13430 isring 13496 dfrhm2 13650 znval 14124 iuncld 14283 txbas 14426 txdis 14445 xmetunirn 14526 xmettxlem 14677 xmettx 14678 gausslemma2dlem1a 15174 pw1nct 15493 |
Copyright terms: Public domain | W3C validator |