| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elv | Unicode version | ||
| Description: Technical lemma used to
shorten proofs. If a proposition is implied by
|
| Ref | Expression |
|---|---|
| elv.1 |
|
| Ref | Expression |
|---|---|
| elv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2775 |
. 2
| |
| 2 | elv.1 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 |
| This theorem is referenced by: xpiindim 4816 disjxp1 6324 ixpiinm 6813 ixpsnf1o 6825 iunfidisj 7050 ssfii 7078 fifo 7084 dcfi 7085 omp1eomlem 7198 exmidomniim 7245 bcval5 10910 rexfiuz 11333 fsum2dlemstep 11778 fsumcnv 11781 fisumcom2 11782 fsumconst 11798 modfsummodlemstep 11801 fsumabs 11809 fprodcllemf 11957 fprod2dlemstep 11966 fprodcnv 11969 fprodcom2fi 11970 fprodmodd 11985 4sqleminfi 12753 ennnfonelemim 12828 topnfn 13109 ptex 13129 prdsvallem 13137 prdsval 13138 xpsff1o 13214 ismgm 13222 issgrp 13268 ismnddef 13283 isnsg 13571 fnmgp 13717 isrng 13729 isring 13795 dfrhm2 13949 znval 14431 iuncld 14620 txbas 14763 txdis 14782 xmetunirn 14863 xmettxlem 15014 xmettx 15015 gausslemma2dlem1a 15568 pw1nct 15977 |
| Copyright terms: Public domain | W3C validator |