![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elv | Unicode version |
Description: Technical lemma used to
shorten proofs. If a proposition is implied by
![]() ![]() ![]() |
Ref | Expression |
---|---|
elv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elv |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2742 |
. 2
![]() ![]() ![]() ![]() | |
2 | elv.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-v 2741 |
This theorem is referenced by: xpiindim 4766 disjxp1 6239 ixpiinm 6726 ixpsnf1o 6738 iunfidisj 6947 ssfii 6975 fifo 6981 dcfi 6982 omp1eomlem 7095 exmidomniim 7141 bcval5 10745 rexfiuz 11000 fsum2dlemstep 11444 fsumcnv 11447 fisumcom2 11448 fsumconst 11464 modfsummodlemstep 11467 fsumabs 11475 fprodcllemf 11623 fprod2dlemstep 11632 fprodcnv 11635 fprodcom2fi 11636 fprodmodd 11651 ennnfonelemim 12427 topnfn 12698 ptex 12718 xpsff1o 12773 ismgm 12781 issgrp 12814 ismnddef 12824 isnsg 13067 fnmgp 13137 isring 13188 iuncld 13654 txbas 13797 txdis 13816 xmetunirn 13897 xmettxlem 14048 xmettx 14049 pw1nct 14791 |
Copyright terms: Public domain | W3C validator |