| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elv | Unicode version | ||
| Description: Technical lemma used to
shorten proofs. If a proposition is implied by
|
| Ref | Expression |
|---|---|
| elv.1 |
|
| Ref | Expression |
|---|---|
| elv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 |
. 2
| |
| 2 | elv.1 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: xpiindim 4804 disjxp1 6296 ixpiinm 6785 ixpsnf1o 6797 iunfidisj 7014 ssfii 7042 fifo 7048 dcfi 7049 omp1eomlem 7162 exmidomniim 7209 bcval5 10858 rexfiuz 11157 fsum2dlemstep 11602 fsumcnv 11605 fisumcom2 11606 fsumconst 11622 modfsummodlemstep 11625 fsumabs 11633 fprodcllemf 11781 fprod2dlemstep 11790 fprodcnv 11793 fprodcom2fi 11794 fprodmodd 11809 4sqleminfi 12577 ennnfonelemim 12652 topnfn 12932 ptex 12952 prdsvallem 12960 prdsval 12961 xpsff1o 13018 ismgm 13026 issgrp 13072 ismnddef 13085 isnsg 13358 fnmgp 13504 isrng 13516 isring 13582 dfrhm2 13736 znval 14218 iuncld 14377 txbas 14520 txdis 14539 xmetunirn 14620 xmettxlem 14771 xmettx 14772 gausslemma2dlem1a 15325 pw1nct 15674 |
| Copyright terms: Public domain | W3C validator |