Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elv | Unicode version |
Description: Technical lemma used to shorten proofs. If a proposition is implied by (which is true, see vex 2712), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
Ref | Expression |
---|---|
elv.1 |
Ref | Expression |
---|---|
elv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2712 | . 2 | |
2 | elv.1 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2125 cvv 2709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-v 2711 |
This theorem is referenced by: xpiindim 4716 disjxp1 6173 ixpiinm 6658 ixpsnf1o 6670 iunfidisj 6879 ssfii 6907 fifo 6913 omp1eomlem 7024 exmidomniim 7063 bcval5 10614 rexfiuz 10866 fsum2dlemstep 11308 fsumcnv 11311 fisumcom2 11312 fsumconst 11328 modfsummodlemstep 11331 fsumabs 11339 fprodcllemf 11487 fprod2dlemstep 11496 fprodcnv 11499 fprodcom2fi 11500 fprodmodd 11515 ennnfonelemim 12104 topnfn 12295 iuncld 12454 txbas 12597 txdis 12616 xmetunirn 12697 xmettxlem 12848 xmettx 12849 pw1nct 13514 |
Copyright terms: Public domain | W3C validator |