| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elv | Unicode version | ||
| Description: Technical lemma used to
shorten proofs. If a proposition is implied by
|
| Ref | Expression |
|---|---|
| elv.1 |
|
| Ref | Expression |
|---|---|
| elv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 |
. 2
| |
| 2 | elv.1 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 |
| This theorem is referenced by: xpiindim 4859 disjxp1 6382 ixpiinm 6871 ixpsnf1o 6883 iunfidisj 7113 ssfii 7141 fifo 7147 dcfi 7148 omp1eomlem 7261 exmidomniim 7308 bcval5 10985 rexfiuz 11500 fsum2dlemstep 11945 fsumcnv 11948 fisumcom2 11949 fsumconst 11965 modfsummodlemstep 11968 fsumabs 11976 fprodcllemf 12124 fprod2dlemstep 12133 fprodcnv 12136 fprodcom2fi 12137 fprodmodd 12152 4sqleminfi 12920 ennnfonelemim 12995 topnfn 13277 ptex 13297 prdsvallem 13305 prdsval 13306 xpsff1o 13382 ismgm 13390 issgrp 13436 ismnddef 13451 isnsg 13739 fnmgp 13885 isrng 13897 isring 13963 dfrhm2 14118 znval 14600 iuncld 14789 txbas 14932 txdis 14951 xmetunirn 15032 xmettxlem 15183 xmettx 15184 gausslemma2dlem1a 15737 isuhgrm 15871 isushgrm 15872 isupgren 15895 upgrex 15903 isumgren 15905 isuspgren 15955 isusgren 15956 pw1nct 16369 |
| Copyright terms: Public domain | W3C validator |