ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omp1eomlem Unicode version

Theorem omp1eomlem 7059
Description: Lemma for omp1eom 7060. (Contributed by Jim Kingdon, 11-Jul-2023.)
Hypotheses
Ref Expression
omp1eom.f  |-  F  =  ( x  e.  om  |->  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) )
omp1eom.s  |-  S  =  ( x  e.  om  |->  suc  x )
omp1eom.g  |-  G  = case ( S ,  (  _I  |`  1o )
)
Assertion
Ref Expression
omp1eomlem  |-  F : om
-1-1-onto-> ( om 1o )
Distinct variable group:    x, G
Allowed substitution hints:    S( x)    F( x)

Proof of Theorem omp1eomlem
Dummy variables  z  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omp1eom.f . . 3  |-  F  =  ( x  e.  om  |->  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) )
2 el1o 6405 . . . . . . 7  |-  ( x  e.  1o  <->  x  =  (/) )
32biimpri 132 . . . . . 6  |-  ( x  =  (/)  ->  x  e.  1o )
43adantl 275 . . . . 5  |-  ( ( ( T.  /\  x  e.  om )  /\  x  =  (/) )  ->  x  e.  1o )
5 djurcl 7017 . . . . 5  |-  ( x  e.  1o  ->  (inr `  x )  e.  ( om 1o ) )
64, 5syl 14 . . . 4  |-  ( ( ( T.  /\  x  e.  om )  /\  x  =  (/) )  ->  (inr `  x )  e.  ( om 1o ) )
7 nnpredcl 4600 . . . . . 6  |-  ( x  e.  om  ->  U. x  e.  om )
87ad2antlr 481 . . . . 5  |-  ( ( ( T.  /\  x  e.  om )  /\  -.  x  =  (/) )  ->  U. x  e.  om )
9 djulcl 7016 . . . . 5  |-  ( U. x  e.  om  ->  (inl
`  U. x )  e.  ( om 1o ) )
108, 9syl 14 . . . 4  |-  ( ( ( T.  /\  x  e.  om )  /\  -.  x  =  (/) )  -> 
(inl `  U. x )  e.  ( om 1o ) )
11 nndceq0 4595 . . . . 5  |-  ( x  e.  om  -> DECID  x  =  (/) )
1211adantl 275 . . . 4  |-  ( ( T.  /\  x  e. 
om )  -> DECID  x  =  (/) )
136, 10, 12ifcldadc 3549 . . 3  |-  ( ( T.  /\  x  e. 
om )  ->  if ( x  =  (/) ,  (inr
`  x ) ,  (inl `  U. x ) )  e.  ( om 1o ) )
14 omp1eom.s . . . . . . . 8  |-  S  =  ( x  e.  om  |->  suc  x )
15 peano2 4572 . . . . . . . 8  |-  ( x  e.  om  ->  suc  x  e.  om )
1614, 15fmpti 5637 . . . . . . 7  |-  S : om
--> om
1716a1i 9 . . . . . 6  |-  ( T. 
->  S : om --> om )
18 f1oi 5470 . . . . . . . . 9  |-  (  _I  |`  1o ) : 1o -1-1-onto-> 1o
19 f1of 5432 . . . . . . . . 9  |-  ( (  _I  |`  1o ) : 1o -1-1-onto-> 1o  ->  (  _I  |`  1o ) : 1o --> 1o )
2018, 19ax-mp 5 . . . . . . . 8  |-  (  _I  |`  1o ) : 1o --> 1o
21 1onn 6488 . . . . . . . . 9  |-  1o  e.  om
22 omelon 4586 . . . . . . . . . 10  |-  om  e.  On
2322onelssi 4407 . . . . . . . . 9  |-  ( 1o  e.  om  ->  1o  C_ 
om )
2421, 23ax-mp 5 . . . . . . . 8  |-  1o  C_  om
25 fss 5349 . . . . . . . 8  |-  ( ( (  _I  |`  1o ) : 1o --> 1o  /\  1o  C_  om )  -> 
(  _I  |`  1o ) : 1o --> om )
2620, 24, 25mp2an 423 . . . . . . 7  |-  (  _I  |`  1o ) : 1o --> om
2726a1i 9 . . . . . 6  |-  ( T. 
->  (  _I  |`  1o ) : 1o --> om )
2817, 27casef 7053 . . . . 5  |-  ( T. 
-> case ( S ,  (  _I  |`  1o )
) : ( om 1o ) --> om )
29 omp1eom.g . . . . . 6  |-  G  = case ( S ,  (  _I  |`  1o )
)
3029feq1i 5330 . . . . 5  |-  ( G : ( om 1o ) --> om  <-> case ( S ,  (  _I  |`  1o )
) : ( om 1o ) --> om )
3128, 30sylibr 133 . . . 4  |-  ( T. 
->  G : ( om 1o ) --> om )
3231ffvelrnda 5620 . . 3  |-  ( ( T.  /\  y  e.  ( om 1o ) )  ->  ( G `  y )  e.  om )
33 ffn 5337 . . . . . . . . . . . . . . . 16  |-  ( S : om --> om  ->  S  Fn  om )
3416, 33mp1i 10 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  om  /\  y  =  (inl `  z
) )  ->  S  Fn  om )
35 ffun 5340 . . . . . . . . . . . . . . . 16  |-  ( (  _I  |`  1o ) : 1o --> 1o  ->  Fun  (  _I  |`  1o ) )
3620, 35mp1i 10 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  om  /\  y  =  (inl `  z
) )  ->  Fun  (  _I  |`  1o ) )
37 simpl 108 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  om  /\  y  =  (inl `  z
) )  ->  z  e.  om )
3834, 36, 37caseinl 7056 . . . . . . . . . . . . . 14  |-  ( ( z  e.  om  /\  y  =  (inl `  z
) )  ->  (case ( S ,  (  _I  |`  1o ) ) `  (inl `  z ) )  =  ( S `  z ) )
3929eqcomi 2169 . . . . . . . . . . . . . . . 16  |- case ( S ,  (  _I  |`  1o ) )  =  G
4039a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  om  /\  y  =  (inl `  z
) )  -> case ( S ,  (  _I  |`  1o ) )  =  G )
41 simpr 109 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  om  /\  y  =  (inl `  z
) )  ->  y  =  (inl `  z )
)
4241eqcomd 2171 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  om  /\  y  =  (inl `  z
) )  ->  (inl `  z )  =  y )
4340, 42fveq12d 5493 . . . . . . . . . . . . . 14  |-  ( ( z  e.  om  /\  y  =  (inl `  z
) )  ->  (case ( S ,  (  _I  |`  1o ) ) `  (inl `  z ) )  =  ( G `  y ) )
44 peano2 4572 . . . . . . . . . . . . . . . 16  |-  ( z  e.  om  ->  suc  z  e.  om )
45 suceq 4380 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  suc  x  =  suc  z )
4645, 14fvmptg 5562 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  om  /\  suc  z  e.  om )  ->  ( S `  z )  =  suc  z )
4744, 46mpdan 418 . . . . . . . . . . . . . . 15  |-  ( z  e.  om  ->  ( S `  z )  =  suc  z )
4847adantr 274 . . . . . . . . . . . . . 14  |-  ( ( z  e.  om  /\  y  =  (inl `  z
) )  ->  ( S `  z )  =  suc  z )
4938, 43, 483eqtr3d 2206 . . . . . . . . . . . . 13  |-  ( ( z  e.  om  /\  y  =  (inl `  z
) )  ->  ( G `  y )  =  suc  z )
50 peano3 4573 . . . . . . . . . . . . . 14  |-  ( z  e.  om  ->  suc  z  =/=  (/) )
5150adantr 274 . . . . . . . . . . . . 13  |-  ( ( z  e.  om  /\  y  =  (inl `  z
) )  ->  suc  z  =/=  (/) )
5249, 51eqnetrd 2360 . . . . . . . . . . . 12  |-  ( ( z  e.  om  /\  y  =  (inl `  z
) )  ->  ( G `  y )  =/=  (/) )
5352adantl 275 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( G `  y )  =/=  (/) )
5453necomd 2422 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  (/)  =/=  ( G `
 y ) )
5554neneqd 2357 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  -.  (/)  =  ( G `  y ) )
56 simplr 520 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  x  =  (/) )
5756eqeq1d 2174 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( x  =  ( G `  y
)  <->  (/)  =  ( G `
 y ) ) )
5855, 57mtbird 663 . . . . . . . 8  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  -.  x  =  ( G `  y ) )
59 djune 7043 . . . . . . . . . . . 12  |-  ( ( z  e.  _V  /\  x  e.  _V )  ->  (inl `  z )  =/=  (inr `  x )
)
6059elvd 2731 . . . . . . . . . . 11  |-  ( z  e.  _V  ->  (inl `  z )  =/=  (inr `  x ) )
6160elv 2730 . . . . . . . . . 10  |-  (inl `  z )  =/=  (inr `  x )
6261neii 2338 . . . . . . . . 9  |-  -.  (inl `  z )  =  (inr
`  x )
63 simprr 522 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  y  =  (inl
`  z ) )
64 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( x  e.  om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  ->  x  =  (/) )
6564iftrued 3527 . . . . . . . . . . 11  |-  ( ( ( x  e.  om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  ->  if ( x  =  (/) ,  (inr
`  x ) ,  (inl `  U. x ) )  =  (inr `  x ) )
6665adantr 274 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  if ( x  =  (/) ,  (inr `  x ) ,  (inl
`  U. x ) )  =  (inr `  x
) )
6763, 66eqeq12d 2180 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( y  =  if ( x  =  (/) ,  (inr `  x
) ,  (inl `  U. x ) )  <->  (inl `  z
)  =  (inr `  x ) ) )
6862, 67mtbiri 665 . . . . . . . 8  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  -.  y  =  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) )
6958, 682falsed 692 . . . . . . 7  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( x  =  ( G `  y
)  <->  y  =  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) ) )
7069rexlimdvaa 2584 . . . . . 6  |-  ( ( ( x  e.  om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  ->  ( E. z  e.  om  y  =  (inl `  z
)  ->  ( x  =  ( G `  y )  <->  y  =  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) ) ) )
71 simplr 520 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  x  =  (/) )
7229a1i 9 . . . . . . . . . . . 12  |-  ( ( z  e.  1o  /\  y  =  (inr `  z
) )  ->  G  = case ( S ,  (  _I  |`  1o )
) )
73 simpr 109 . . . . . . . . . . . 12  |-  ( ( z  e.  1o  /\  y  =  (inr `  z
) )  ->  y  =  (inr `  z )
)
7472, 73fveq12d 5493 . . . . . . . . . . 11  |-  ( ( z  e.  1o  /\  y  =  (inr `  z
) )  ->  ( G `  y )  =  (case ( S , 
(  _I  |`  1o ) ) `  (inr `  z ) ) )
7514funmpt2 5227 . . . . . . . . . . . . . 14  |-  Fun  S
7675a1i 9 . . . . . . . . . . . . 13  |-  ( ( z  e.  1o  /\  y  =  (inr `  z
) )  ->  Fun  S )
77 fnresi 5305 . . . . . . . . . . . . . 14  |-  (  _I  |`  1o )  Fn  1o
7877a1i 9 . . . . . . . . . . . . 13  |-  ( ( z  e.  1o  /\  y  =  (inr `  z
) )  ->  (  _I  |`  1o )  Fn  1o )
79 simpl 108 . . . . . . . . . . . . 13  |-  ( ( z  e.  1o  /\  y  =  (inr `  z
) )  ->  z  e.  1o )
8076, 78, 79caseinr 7057 . . . . . . . . . . . 12  |-  ( ( z  e.  1o  /\  y  =  (inr `  z
) )  ->  (case ( S ,  (  _I  |`  1o ) ) `  (inr `  z ) )  =  ( (  _I  |`  1o ) `  z
) )
81 fvresi 5678 . . . . . . . . . . . . 13  |-  ( z  e.  1o  ->  (
(  _I  |`  1o ) `
 z )  =  z )
8281adantr 274 . . . . . . . . . . . 12  |-  ( ( z  e.  1o  /\  y  =  (inr `  z
) )  ->  (
(  _I  |`  1o ) `
 z )  =  z )
8380, 82eqtrd 2198 . . . . . . . . . . 11  |-  ( ( z  e.  1o  /\  y  =  (inr `  z
) )  ->  (case ( S ,  (  _I  |`  1o ) ) `  (inr `  z ) )  =  z )
84 el1o 6405 . . . . . . . . . . . 12  |-  ( z  e.  1o  <->  z  =  (/) )
8579, 84sylib 121 . . . . . . . . . . 11  |-  ( ( z  e.  1o  /\  y  =  (inr `  z
) )  ->  z  =  (/) )
8674, 83, 853eqtrd 2202 . . . . . . . . . 10  |-  ( ( z  e.  1o  /\  y  =  (inr `  z
) )  ->  ( G `  y )  =  (/) )
8786adantl 275 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  ( G `  y )  =  (/) )
8871, 87eqtr4d 2201 . . . . . . . 8  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  x  =  ( G `  y ) )
8985adantl 275 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  z  =  (/) )
9071, 89eqtr4d 2201 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  x  =  z )
9190fveq2d 5490 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  (inr `  x
)  =  (inr `  z ) )
9265adantr 274 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  if ( x  =  (/) ,  (inr `  x ) ,  (inl
`  U. x ) )  =  (inr `  x
) )
93 simprr 522 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  y  =  (inr
`  z ) )
9491, 92, 933eqtr4rd 2209 . . . . . . . 8  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  y  =  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) )
9588, 942thd 174 . . . . . . 7  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  ( x  =  ( G `  y
)  <->  y  =  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) ) )
9695rexlimdvaa 2584 . . . . . 6  |-  ( ( ( x  e.  om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  ->  ( E. z  e.  1o  y  =  (inr `  z
)  ->  ( x  =  ( G `  y )  <->  y  =  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) ) ) )
97 djur 7034 . . . . . . . 8  |-  ( y  e.  ( om 1o )  <-> 
( E. z  e. 
om  y  =  (inl
`  z )  \/ 
E. z  e.  1o  y  =  (inr `  z
) ) )
9897biimpi 119 . . . . . . 7  |-  ( y  e.  ( om 1o )  ->  ( E. z  e.  om  y  =  (inl
`  z )  \/ 
E. z  e.  1o  y  =  (inr `  z
) ) )
9998ad2antlr 481 . . . . . 6  |-  ( ( ( x  e.  om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  ->  ( E. z  e.  om  y  =  (inl `  z
)  \/  E. z  e.  1o  y  =  (inr
`  z ) ) )
10070, 96, 99mpjaod 708 . . . . 5  |-  ( ( ( x  e.  om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  ->  (
x  =  ( G `
 y )  <->  y  =  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) ) )
101 simplll 523 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  x  e.  om )
102 simplr 520 . . . . . . . . . . . 12  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  -.  x  =  (/) )
103102neqned 2343 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  x  =/=  (/) )
104 nnsucpred 4594 . . . . . . . . . . 11  |-  ( ( x  e.  om  /\  x  =/=  (/) )  ->  suc  U. x  =  x )
105101, 103, 104syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  suc  U. x  =  x )
106105eqeq2d 2177 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( suc  z  =  suc  U. x  <->  suc  z  =  x ) )
107 eqcom 2167 . . . . . . . . 9  |-  ( suc  z  =  x  <->  x  =  suc  z )
108106, 107bitrdi 195 . . . . . . . 8  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( suc  z  =  suc  U. x  <->  x  =  suc  z ) )
109 simprr 522 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  y  =  (inl
`  z ) )
110 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  ->  -.  x  =  (/) )
111110iffalsed 3530 . . . . . . . . . . . 12  |-  ( ( ( x  e.  om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  ->  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) )  =  (inl `  U. x ) )
112111adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  if ( x  =  (/) ,  (inr `  x ) ,  (inl
`  U. x ) )  =  (inl `  U. x ) )
113109, 112eqeq12d 2180 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( y  =  if ( x  =  (/) ,  (inr `  x
) ,  (inl `  U. x ) )  <->  (inl `  z
)  =  (inl `  U. x ) ) )
114 vuniex 4416 . . . . . . . . . . . 12  |-  U. x  e.  _V
115 inl11 7030 . . . . . . . . . . . 12  |-  ( ( z  e.  _V  /\  U. x  e.  _V )  ->  ( (inl `  z
)  =  (inl `  U. x )  <->  z  =  U. x ) )
116114, 115mpan2 422 . . . . . . . . . . 11  |-  ( z  e.  _V  ->  (
(inl `  z )  =  (inl `  U. x )  <-> 
z  =  U. x
) )
117116elv 2730 . . . . . . . . . 10  |-  ( (inl
`  z )  =  (inl `  U. x )  <-> 
z  =  U. x
)
118113, 117bitrdi 195 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( y  =  if ( x  =  (/) ,  (inr `  x
) ,  (inl `  U. x ) )  <->  z  =  U. x ) )
119 nnon 4587 . . . . . . . . . . 11  |-  ( z  e.  om  ->  z  e.  On )
120119ad2antrl 482 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  z  e.  On )
1217ad3antrrr 484 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  U. x  e.  om )
122 nnon 4587 . . . . . . . . . . 11  |-  ( U. x  e.  om  ->  U. x  e.  On )
123121, 122syl 14 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  U. x  e.  On )
124 suc11 4535 . . . . . . . . . 10  |-  ( ( z  e.  On  /\  U. x  e.  On )  ->  ( suc  z  =  suc  U. x  <->  z  =  U. x ) )
125120, 123, 124syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( suc  z  =  suc  U. x  <->  z  =  U. x ) )
126118, 125bitr4d 190 . . . . . . . 8  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( y  =  if ( x  =  (/) ,  (inr `  x
) ,  (inl `  U. x ) )  <->  suc  z  =  suc  U. x ) )
12749adantl 275 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( G `  y )  =  suc  z )
128127eqeq2d 2177 . . . . . . . 8  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( x  =  ( G `  y
)  <->  x  =  suc  z ) )
129108, 126, 1283bitr4rd 220 . . . . . . 7  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( x  =  ( G `  y
)  <->  y  =  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) ) )
130129rexlimdvaa 2584 . . . . . 6  |-  ( ( ( x  e.  om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  -> 
( E. z  e. 
om  y  =  (inl
`  z )  -> 
( x  =  ( G `  y )  <-> 
y  =  if ( x  =  (/) ,  (inr
`  x ) ,  (inl `  U. x ) ) ) ) )
131 simplr 520 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  -.  x  =  (/) )
13286adantl 275 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  ( G `  y )  =  (/) )
133132eqeq2d 2177 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  ( x  =  ( G `  y
)  <->  x  =  (/) ) )
134131, 133mtbird 663 . . . . . . . 8  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  -.  x  =  ( G `  y ) )
135 djune 7043 . . . . . . . . . . . 12  |-  ( ( U. x  e.  _V  /\  z  e.  _V )  ->  (inl `  U. x )  =/=  (inr `  z
) )
136135elvd 2731 . . . . . . . . . . 11  |-  ( U. x  e.  _V  ->  (inl
`  U. x )  =/=  (inr `  z )
)
137114, 136ax-mp 5 . . . . . . . . . 10  |-  (inl `  U. x )  =/=  (inr `  z )
138137nesymi 2382 . . . . . . . . 9  |-  -.  (inr `  z )  =  (inl
`  U. x )
13973, 111eqeqan12rd 2182 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  ( y  =  if ( x  =  (/) ,  (inr `  x
) ,  (inl `  U. x ) )  <->  (inr `  z
)  =  (inl `  U. x ) ) )
140138, 139mtbiri 665 . . . . . . . 8  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  -.  y  =  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) )
141134, 1402falsed 692 . . . . . . 7  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  ( x  =  ( G `  y
)  <->  y  =  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) ) )
142141rexlimdvaa 2584 . . . . . 6  |-  ( ( ( x  e.  om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  -> 
( E. z  e.  1o  y  =  (inr
`  z )  -> 
( x  =  ( G `  y )  <-> 
y  =  if ( x  =  (/) ,  (inr
`  x ) ,  (inl `  U. x ) ) ) ) )
14398ad2antlr 481 . . . . . 6  |-  ( ( ( x  e.  om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  -> 
( E. z  e. 
om  y  =  (inl
`  z )  \/ 
E. z  e.  1o  y  =  (inr `  z
) ) )
144130, 142, 143mpjaod 708 . . . . 5  |-  ( ( ( x  e.  om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  -> 
( x  =  ( G `  y )  <-> 
y  =  if ( x  =  (/) ,  (inr
`  x ) ,  (inl `  U. x ) ) ) )
145 exmiddc 826 . . . . . . 7  |-  (DECID  x  =  (/)  ->  ( x  =  (/)  \/  -.  x  =  (/) ) )
14611, 145syl 14 . . . . . 6  |-  ( x  e.  om  ->  (
x  =  (/)  \/  -.  x  =  (/) ) )
147146adantr 274 . . . . 5  |-  ( ( x  e.  om  /\  y  e.  ( om 1o ) )  ->  (
x  =  (/)  \/  -.  x  =  (/) ) )
148100, 144, 147mpjaodan 788 . . . 4  |-  ( ( x  e.  om  /\  y  e.  ( om 1o ) )  ->  (
x  =  ( G `
 y )  <->  y  =  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) ) )
149148adantl 275 . . 3  |-  ( ( T.  /\  ( x  e.  om  /\  y  e.  ( om 1o ) ) )  ->  ( x  =  ( G `  y )  <->  y  =  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) ) )
1501, 13, 32, 149f1o2d 6043 . 2  |-  ( T. 
->  F : om -1-1-onto-> ( om 1o ) )
151150mptru 1352 1  |-  F : om
-1-1-onto-> ( om 1o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    = wceq 1343   T. wtru 1344    e. wcel 2136    =/= wne 2336   E.wrex 2445   _Vcvv 2726    C_ wss 3116   (/)c0 3409   ifcif 3520   U.cuni 3789    |-> cmpt 4043    _I cid 4266   Oncon0 4341   suc csuc 4343   omcom 4567    |` cres 4606   Fun wfun 5182    Fn wfn 5183   -->wf 5184   -1-1-onto->wf1o 5187   ` cfv 5188   1oc1o 6377   ⊔ cdju 7002  inlcinl 7010  inrcinr 7011  casecdjucase 7048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-dju 7003  df-inl 7012  df-inr 7013  df-case 7049
This theorem is referenced by:  omp1eom  7060
  Copyright terms: Public domain W3C validator