ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omp1eomlem Unicode version

Theorem omp1eomlem 7155
Description: Lemma for omp1eom 7156. (Contributed by Jim Kingdon, 11-Jul-2023.)
Hypotheses
Ref Expression
omp1eom.f  |-  F  =  ( x  e.  om  |->  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) )
omp1eom.s  |-  S  =  ( x  e.  om  |->  suc  x )
omp1eom.g  |-  G  = case ( S ,  (  _I  |`  1o )
)
Assertion
Ref Expression
omp1eomlem  |-  F : om
-1-1-onto-> ( om 1o )
Distinct variable group:    x, G
Allowed substitution hints:    S( x)    F( x)

Proof of Theorem omp1eomlem
Dummy variables  z  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omp1eom.f . . 3  |-  F  =  ( x  e.  om  |->  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) )
2 el1o 6492 . . . . . . 7  |-  ( x  e.  1o  <->  x  =  (/) )
32biimpri 133 . . . . . 6  |-  ( x  =  (/)  ->  x  e.  1o )
43adantl 277 . . . . 5  |-  ( ( ( T.  /\  x  e.  om )  /\  x  =  (/) )  ->  x  e.  1o )
5 djurcl 7113 . . . . 5  |-  ( x  e.  1o  ->  (inr `  x )  e.  ( om 1o ) )
64, 5syl 14 . . . 4  |-  ( ( ( T.  /\  x  e.  om )  /\  x  =  (/) )  ->  (inr `  x )  e.  ( om 1o ) )
7 nnpredcl 4656 . . . . . 6  |-  ( x  e.  om  ->  U. x  e.  om )
87ad2antlr 489 . . . . 5  |-  ( ( ( T.  /\  x  e.  om )  /\  -.  x  =  (/) )  ->  U. x  e.  om )
9 djulcl 7112 . . . . 5  |-  ( U. x  e.  om  ->  (inl
`  U. x )  e.  ( om 1o ) )
108, 9syl 14 . . . 4  |-  ( ( ( T.  /\  x  e.  om )  /\  -.  x  =  (/) )  -> 
(inl `  U. x )  e.  ( om 1o ) )
11 nndceq0 4651 . . . . 5  |-  ( x  e.  om  -> DECID  x  =  (/) )
1211adantl 277 . . . 4  |-  ( ( T.  /\  x  e. 
om )  -> DECID  x  =  (/) )
136, 10, 12ifcldadc 3587 . . 3  |-  ( ( T.  /\  x  e. 
om )  ->  if ( x  =  (/) ,  (inr
`  x ) ,  (inl `  U. x ) )  e.  ( om 1o ) )
14 omp1eom.s . . . . . . . 8  |-  S  =  ( x  e.  om  |->  suc  x )
15 peano2 4628 . . . . . . . 8  |-  ( x  e.  om  ->  suc  x  e.  om )
1614, 15fmpti 5711 . . . . . . 7  |-  S : om
--> om
1716a1i 9 . . . . . 6  |-  ( T. 
->  S : om --> om )
18 f1oi 5539 . . . . . . . . 9  |-  (  _I  |`  1o ) : 1o -1-1-onto-> 1o
19 f1of 5501 . . . . . . . . 9  |-  ( (  _I  |`  1o ) : 1o -1-1-onto-> 1o  ->  (  _I  |`  1o ) : 1o --> 1o )
2018, 19ax-mp 5 . . . . . . . 8  |-  (  _I  |`  1o ) : 1o --> 1o
21 1onn 6575 . . . . . . . . 9  |-  1o  e.  om
22 omelon 4642 . . . . . . . . . 10  |-  om  e.  On
2322onelssi 4461 . . . . . . . . 9  |-  ( 1o  e.  om  ->  1o  C_ 
om )
2421, 23ax-mp 5 . . . . . . . 8  |-  1o  C_  om
25 fss 5416 . . . . . . . 8  |-  ( ( (  _I  |`  1o ) : 1o --> 1o  /\  1o  C_  om )  -> 
(  _I  |`  1o ) : 1o --> om )
2620, 24, 25mp2an 426 . . . . . . 7  |-  (  _I  |`  1o ) : 1o --> om
2726a1i 9 . . . . . 6  |-  ( T. 
->  (  _I  |`  1o ) : 1o --> om )
2817, 27casef 7149 . . . . 5  |-  ( T. 
-> case ( S ,  (  _I  |`  1o )
) : ( om 1o ) --> om )
29 omp1eom.g . . . . . 6  |-  G  = case ( S ,  (  _I  |`  1o )
)
3029feq1i 5397 . . . . 5  |-  ( G : ( om 1o ) --> om  <-> case ( S ,  (  _I  |`  1o )
) : ( om 1o ) --> om )
3128, 30sylibr 134 . . . 4  |-  ( T. 
->  G : ( om 1o ) --> om )
3231ffvelcdmda 5694 . . 3  |-  ( ( T.  /\  y  e.  ( om 1o ) )  ->  ( G `  y )  e.  om )
33 ffn 5404 . . . . . . . . . . . . . . . 16  |-  ( S : om --> om  ->  S  Fn  om )
3416, 33mp1i 10 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  om  /\  y  =  (inl `  z
) )  ->  S  Fn  om )
35 ffun 5407 . . . . . . . . . . . . . . . 16  |-  ( (  _I  |`  1o ) : 1o --> 1o  ->  Fun  (  _I  |`  1o ) )
3620, 35mp1i 10 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  om  /\  y  =  (inl `  z
) )  ->  Fun  (  _I  |`  1o ) )
37 simpl 109 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  om  /\  y  =  (inl `  z
) )  ->  z  e.  om )
3834, 36, 37caseinl 7152 . . . . . . . . . . . . . 14  |-  ( ( z  e.  om  /\  y  =  (inl `  z
) )  ->  (case ( S ,  (  _I  |`  1o ) ) `  (inl `  z ) )  =  ( S `  z ) )
3929eqcomi 2197 . . . . . . . . . . . . . . . 16  |- case ( S ,  (  _I  |`  1o ) )  =  G
4039a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  om  /\  y  =  (inl `  z
) )  -> case ( S ,  (  _I  |`  1o ) )  =  G )
41 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  om  /\  y  =  (inl `  z
) )  ->  y  =  (inl `  z )
)
4241eqcomd 2199 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  om  /\  y  =  (inl `  z
) )  ->  (inl `  z )  =  y )
4340, 42fveq12d 5562 . . . . . . . . . . . . . 14  |-  ( ( z  e.  om  /\  y  =  (inl `  z
) )  ->  (case ( S ,  (  _I  |`  1o ) ) `  (inl `  z ) )  =  ( G `  y ) )
44 peano2 4628 . . . . . . . . . . . . . . . 16  |-  ( z  e.  om  ->  suc  z  e.  om )
45 suceq 4434 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  suc  x  =  suc  z )
4645, 14fvmptg 5634 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  om  /\  suc  z  e.  om )  ->  ( S `  z )  =  suc  z )
4744, 46mpdan 421 . . . . . . . . . . . . . . 15  |-  ( z  e.  om  ->  ( S `  z )  =  suc  z )
4847adantr 276 . . . . . . . . . . . . . 14  |-  ( ( z  e.  om  /\  y  =  (inl `  z
) )  ->  ( S `  z )  =  suc  z )
4938, 43, 483eqtr3d 2234 . . . . . . . . . . . . 13  |-  ( ( z  e.  om  /\  y  =  (inl `  z
) )  ->  ( G `  y )  =  suc  z )
50 peano3 4629 . . . . . . . . . . . . . 14  |-  ( z  e.  om  ->  suc  z  =/=  (/) )
5150adantr 276 . . . . . . . . . . . . 13  |-  ( ( z  e.  om  /\  y  =  (inl `  z
) )  ->  suc  z  =/=  (/) )
5249, 51eqnetrd 2388 . . . . . . . . . . . 12  |-  ( ( z  e.  om  /\  y  =  (inl `  z
) )  ->  ( G `  y )  =/=  (/) )
5352adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( G `  y )  =/=  (/) )
5453necomd 2450 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  (/)  =/=  ( G `
 y ) )
5554neneqd 2385 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  -.  (/)  =  ( G `  y ) )
56 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  x  =  (/) )
5756eqeq1d 2202 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( x  =  ( G `  y
)  <->  (/)  =  ( G `
 y ) ) )
5855, 57mtbird 674 . . . . . . . 8  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  -.  x  =  ( G `  y ) )
59 djune 7139 . . . . . . . . . . . 12  |-  ( ( z  e.  _V  /\  x  e.  _V )  ->  (inl `  z )  =/=  (inr `  x )
)
6059elvd 2765 . . . . . . . . . . 11  |-  ( z  e.  _V  ->  (inl `  z )  =/=  (inr `  x ) )
6160elv 2764 . . . . . . . . . 10  |-  (inl `  z )  =/=  (inr `  x )
6261neii 2366 . . . . . . . . 9  |-  -.  (inl `  z )  =  (inr
`  x )
63 simprr 531 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  y  =  (inl
`  z ) )
64 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( x  e.  om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  ->  x  =  (/) )
6564iftrued 3565 . . . . . . . . . . 11  |-  ( ( ( x  e.  om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  ->  if ( x  =  (/) ,  (inr
`  x ) ,  (inl `  U. x ) )  =  (inr `  x ) )
6665adantr 276 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  if ( x  =  (/) ,  (inr `  x ) ,  (inl
`  U. x ) )  =  (inr `  x
) )
6763, 66eqeq12d 2208 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( y  =  if ( x  =  (/) ,  (inr `  x
) ,  (inl `  U. x ) )  <->  (inl `  z
)  =  (inr `  x ) ) )
6862, 67mtbiri 676 . . . . . . . 8  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  -.  y  =  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) )
6958, 682falsed 703 . . . . . . 7  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( x  =  ( G `  y
)  <->  y  =  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) ) )
7069rexlimdvaa 2612 . . . . . 6  |-  ( ( ( x  e.  om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  ->  ( E. z  e.  om  y  =  (inl `  z
)  ->  ( x  =  ( G `  y )  <->  y  =  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) ) ) )
71 simplr 528 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  x  =  (/) )
7229a1i 9 . . . . . . . . . . . 12  |-  ( ( z  e.  1o  /\  y  =  (inr `  z
) )  ->  G  = case ( S ,  (  _I  |`  1o )
) )
73 simpr 110 . . . . . . . . . . . 12  |-  ( ( z  e.  1o  /\  y  =  (inr `  z
) )  ->  y  =  (inr `  z )
)
7472, 73fveq12d 5562 . . . . . . . . . . 11  |-  ( ( z  e.  1o  /\  y  =  (inr `  z
) )  ->  ( G `  y )  =  (case ( S , 
(  _I  |`  1o ) ) `  (inr `  z ) ) )
7514funmpt2 5294 . . . . . . . . . . . . . 14  |-  Fun  S
7675a1i 9 . . . . . . . . . . . . 13  |-  ( ( z  e.  1o  /\  y  =  (inr `  z
) )  ->  Fun  S )
77 fnresi 5372 . . . . . . . . . . . . . 14  |-  (  _I  |`  1o )  Fn  1o
7877a1i 9 . . . . . . . . . . . . 13  |-  ( ( z  e.  1o  /\  y  =  (inr `  z
) )  ->  (  _I  |`  1o )  Fn  1o )
79 simpl 109 . . . . . . . . . . . . 13  |-  ( ( z  e.  1o  /\  y  =  (inr `  z
) )  ->  z  e.  1o )
8076, 78, 79caseinr 7153 . . . . . . . . . . . 12  |-  ( ( z  e.  1o  /\  y  =  (inr `  z
) )  ->  (case ( S ,  (  _I  |`  1o ) ) `  (inr `  z ) )  =  ( (  _I  |`  1o ) `  z
) )
81 fvresi 5752 . . . . . . . . . . . . 13  |-  ( z  e.  1o  ->  (
(  _I  |`  1o ) `
 z )  =  z )
8281adantr 276 . . . . . . . . . . . 12  |-  ( ( z  e.  1o  /\  y  =  (inr `  z
) )  ->  (
(  _I  |`  1o ) `
 z )  =  z )
8380, 82eqtrd 2226 . . . . . . . . . . 11  |-  ( ( z  e.  1o  /\  y  =  (inr `  z
) )  ->  (case ( S ,  (  _I  |`  1o ) ) `  (inr `  z ) )  =  z )
84 el1o 6492 . . . . . . . . . . . 12  |-  ( z  e.  1o  <->  z  =  (/) )
8579, 84sylib 122 . . . . . . . . . . 11  |-  ( ( z  e.  1o  /\  y  =  (inr `  z
) )  ->  z  =  (/) )
8674, 83, 853eqtrd 2230 . . . . . . . . . 10  |-  ( ( z  e.  1o  /\  y  =  (inr `  z
) )  ->  ( G `  y )  =  (/) )
8786adantl 277 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  ( G `  y )  =  (/) )
8871, 87eqtr4d 2229 . . . . . . . 8  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  x  =  ( G `  y ) )
8985adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  z  =  (/) )
9071, 89eqtr4d 2229 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  x  =  z )
9190fveq2d 5559 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  (inr `  x
)  =  (inr `  z ) )
9265adantr 276 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  if ( x  =  (/) ,  (inr `  x ) ,  (inl
`  U. x ) )  =  (inr `  x
) )
93 simprr 531 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  y  =  (inr
`  z ) )
9491, 92, 933eqtr4rd 2237 . . . . . . . 8  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  y  =  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) )
9588, 942thd 175 . . . . . . 7  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  ( x  =  ( G `  y
)  <->  y  =  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) ) )
9695rexlimdvaa 2612 . . . . . 6  |-  ( ( ( x  e.  om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  ->  ( E. z  e.  1o  y  =  (inr `  z
)  ->  ( x  =  ( G `  y )  <->  y  =  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) ) ) )
97 djur 7130 . . . . . . . 8  |-  ( y  e.  ( om 1o )  <-> 
( E. z  e. 
om  y  =  (inl
`  z )  \/ 
E. z  e.  1o  y  =  (inr `  z
) ) )
9897biimpi 120 . . . . . . 7  |-  ( y  e.  ( om 1o )  ->  ( E. z  e.  om  y  =  (inl
`  z )  \/ 
E. z  e.  1o  y  =  (inr `  z
) ) )
9998ad2antlr 489 . . . . . 6  |-  ( ( ( x  e.  om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  ->  ( E. z  e.  om  y  =  (inl `  z
)  \/  E. z  e.  1o  y  =  (inr
`  z ) ) )
10070, 96, 99mpjaod 719 . . . . 5  |-  ( ( ( x  e.  om  /\  y  e.  ( om 1o ) )  /\  x  =  (/) )  ->  (
x  =  ( G `
 y )  <->  y  =  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) ) )
101 simplll 533 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  x  e.  om )
102 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  -.  x  =  (/) )
103102neqned 2371 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  x  =/=  (/) )
104 nnsucpred 4650 . . . . . . . . . . 11  |-  ( ( x  e.  om  /\  x  =/=  (/) )  ->  suc  U. x  =  x )
105101, 103, 104syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  suc  U. x  =  x )
106105eqeq2d 2205 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( suc  z  =  suc  U. x  <->  suc  z  =  x ) )
107 eqcom 2195 . . . . . . . . 9  |-  ( suc  z  =  x  <->  x  =  suc  z )
108106, 107bitrdi 196 . . . . . . . 8  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( suc  z  =  suc  U. x  <->  x  =  suc  z ) )
109 simprr 531 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  y  =  (inl
`  z ) )
110 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  ->  -.  x  =  (/) )
111110iffalsed 3568 . . . . . . . . . . . 12  |-  ( ( ( x  e.  om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  ->  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) )  =  (inl `  U. x ) )
112111adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  if ( x  =  (/) ,  (inr `  x ) ,  (inl
`  U. x ) )  =  (inl `  U. x ) )
113109, 112eqeq12d 2208 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( y  =  if ( x  =  (/) ,  (inr `  x
) ,  (inl `  U. x ) )  <->  (inl `  z
)  =  (inl `  U. x ) ) )
114 vuniex 4470 . . . . . . . . . . . 12  |-  U. x  e.  _V
115 inl11 7126 . . . . . . . . . . . 12  |-  ( ( z  e.  _V  /\  U. x  e.  _V )  ->  ( (inl `  z
)  =  (inl `  U. x )  <->  z  =  U. x ) )
116114, 115mpan2 425 . . . . . . . . . . 11  |-  ( z  e.  _V  ->  (
(inl `  z )  =  (inl `  U. x )  <-> 
z  =  U. x
) )
117116elv 2764 . . . . . . . . . 10  |-  ( (inl
`  z )  =  (inl `  U. x )  <-> 
z  =  U. x
)
118113, 117bitrdi 196 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( y  =  if ( x  =  (/) ,  (inr `  x
) ,  (inl `  U. x ) )  <->  z  =  U. x ) )
119 nnon 4643 . . . . . . . . . . 11  |-  ( z  e.  om  ->  z  e.  On )
120119ad2antrl 490 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  z  e.  On )
1217ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  U. x  e.  om )
122 nnon 4643 . . . . . . . . . . 11  |-  ( U. x  e.  om  ->  U. x  e.  On )
123121, 122syl 14 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  U. x  e.  On )
124 suc11 4591 . . . . . . . . . 10  |-  ( ( z  e.  On  /\  U. x  e.  On )  ->  ( suc  z  =  suc  U. x  <->  z  =  U. x ) )
125120, 123, 124syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( suc  z  =  suc  U. x  <->  z  =  U. x ) )
126118, 125bitr4d 191 . . . . . . . 8  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( y  =  if ( x  =  (/) ,  (inr `  x
) ,  (inl `  U. x ) )  <->  suc  z  =  suc  U. x ) )
12749adantl 277 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( G `  y )  =  suc  z )
128127eqeq2d 2205 . . . . . . . 8  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( x  =  ( G `  y
)  <->  x  =  suc  z ) )
129108, 126, 1283bitr4rd 221 . . . . . . 7  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  om  /\  y  =  (inl `  z ) ) )  ->  ( x  =  ( G `  y
)  <->  y  =  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) ) )
130129rexlimdvaa 2612 . . . . . 6  |-  ( ( ( x  e.  om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  -> 
( E. z  e. 
om  y  =  (inl
`  z )  -> 
( x  =  ( G `  y )  <-> 
y  =  if ( x  =  (/) ,  (inr
`  x ) ,  (inl `  U. x ) ) ) ) )
131 simplr 528 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  -.  x  =  (/) )
13286adantl 277 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  ( G `  y )  =  (/) )
133132eqeq2d 2205 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  ( x  =  ( G `  y
)  <->  x  =  (/) ) )
134131, 133mtbird 674 . . . . . . . 8  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  -.  x  =  ( G `  y ) )
135 djune 7139 . . . . . . . . . . . 12  |-  ( ( U. x  e.  _V  /\  z  e.  _V )  ->  (inl `  U. x )  =/=  (inr `  z
) )
136135elvd 2765 . . . . . . . . . . 11  |-  ( U. x  e.  _V  ->  (inl
`  U. x )  =/=  (inr `  z )
)
137114, 136ax-mp 5 . . . . . . . . . 10  |-  (inl `  U. x )  =/=  (inr `  z )
138137nesymi 2410 . . . . . . . . 9  |-  -.  (inr `  z )  =  (inl
`  U. x )
13973, 111eqeqan12rd 2210 . . . . . . . . 9  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  ( y  =  if ( x  =  (/) ,  (inr `  x
) ,  (inl `  U. x ) )  <->  (inr `  z
)  =  (inl `  U. x ) ) )
140138, 139mtbiri 676 . . . . . . . 8  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  -.  y  =  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) )
141134, 1402falsed 703 . . . . . . 7  |-  ( ( ( ( x  e. 
om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  /\  ( z  e.  1o  /\  y  =  (inr `  z ) ) )  ->  ( x  =  ( G `  y
)  <->  y  =  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) ) )
142141rexlimdvaa 2612 . . . . . 6  |-  ( ( ( x  e.  om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  -> 
( E. z  e.  1o  y  =  (inr
`  z )  -> 
( x  =  ( G `  y )  <-> 
y  =  if ( x  =  (/) ,  (inr
`  x ) ,  (inl `  U. x ) ) ) ) )
14398ad2antlr 489 . . . . . 6  |-  ( ( ( x  e.  om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  -> 
( E. z  e. 
om  y  =  (inl
`  z )  \/ 
E. z  e.  1o  y  =  (inr `  z
) ) )
144130, 142, 143mpjaod 719 . . . . 5  |-  ( ( ( x  e.  om  /\  y  e.  ( om 1o ) )  /\  -.  x  =  (/) )  -> 
( x  =  ( G `  y )  <-> 
y  =  if ( x  =  (/) ,  (inr
`  x ) ,  (inl `  U. x ) ) ) )
145 exmiddc 837 . . . . . . 7  |-  (DECID  x  =  (/)  ->  ( x  =  (/)  \/  -.  x  =  (/) ) )
14611, 145syl 14 . . . . . 6  |-  ( x  e.  om  ->  (
x  =  (/)  \/  -.  x  =  (/) ) )
147146adantr 276 . . . . 5  |-  ( ( x  e.  om  /\  y  e.  ( om 1o ) )  ->  (
x  =  (/)  \/  -.  x  =  (/) ) )
148100, 144, 147mpjaodan 799 . . . 4  |-  ( ( x  e.  om  /\  y  e.  ( om 1o ) )  ->  (
x  =  ( G `
 y )  <->  y  =  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) ) )
149148adantl 277 . . 3  |-  ( ( T.  /\  ( x  e.  om  /\  y  e.  ( om 1o ) ) )  ->  ( x  =  ( G `  y )  <->  y  =  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) ) )
1501, 13, 32, 149f1o2d 6125 . 2  |-  ( T. 
->  F : om -1-1-onto-> ( om 1o ) )
151150mptru 1373 1  |-  F : om
-1-1-onto-> ( om 1o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364   T. wtru 1365    e. wcel 2164    =/= wne 2364   E.wrex 2473   _Vcvv 2760    C_ wss 3154   (/)c0 3447   ifcif 3558   U.cuni 3836    |-> cmpt 4091    _I cid 4320   Oncon0 4395   suc csuc 4397   omcom 4623    |` cres 4662   Fun wfun 5249    Fn wfn 5250   -->wf 5251   -1-1-onto->wf1o 5254   ` cfv 5255   1oc1o 6464   ⊔ cdju 7098  inlcinl 7106  inrcinr 7107  casecdjucase 7144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-1o 6471  df-dju 7099  df-inl 7108  df-inr 7109  df-case 7145
This theorem is referenced by:  omp1eom  7156
  Copyright terms: Public domain W3C validator