ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exprmfct Unicode version

Theorem exprmfct 12092
Description: Every integer greater than or equal to 2 has a prime factor. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
exprmfct  |-  ( N  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  N
)
Distinct variable group:    N, p

Proof of Theorem exprmfct
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluz2nn 9525 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN )
2 eleq1 2233 . . . 4  |-  ( x  =  1  ->  (
x  e.  ( ZZ>= ` 
2 )  <->  1  e.  ( ZZ>= `  2 )
) )
32imbi1d 230 . . 3  |-  ( x  =  1  ->  (
( x  e.  (
ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  x )  <->  ( 1  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  x
) ) )
4 eleq1 2233 . . . 4  |-  ( x  =  y  ->  (
x  e.  ( ZZ>= ` 
2 )  <->  y  e.  ( ZZ>= `  2 )
) )
5 breq2 3993 . . . . 5  |-  ( x  =  y  ->  (
p  ||  x  <->  p  ||  y
) )
65rexbidv 2471 . . . 4  |-  ( x  =  y  ->  ( E. p  e.  Prime  p 
||  x  <->  E. p  e.  Prime  p  ||  y
) )
74, 6imbi12d 233 . . 3  |-  ( x  =  y  ->  (
( x  e.  (
ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  x )  <->  ( y  e.  ( ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  y ) ) )
8 eleq1 2233 . . . 4  |-  ( x  =  z  ->  (
x  e.  ( ZZ>= ` 
2 )  <->  z  e.  ( ZZ>= `  2 )
) )
9 breq2 3993 . . . . 5  |-  ( x  =  z  ->  (
p  ||  x  <->  p  ||  z
) )
109rexbidv 2471 . . . 4  |-  ( x  =  z  ->  ( E. p  e.  Prime  p 
||  x  <->  E. p  e.  Prime  p  ||  z
) )
118, 10imbi12d 233 . . 3  |-  ( x  =  z  ->  (
( x  e.  (
ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  x )  <->  ( z  e.  ( ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  z ) ) )
12 eleq1 2233 . . . 4  |-  ( x  =  ( y  x.  z )  ->  (
x  e.  ( ZZ>= ` 
2 )  <->  ( y  x.  z )  e.  (
ZZ>= `  2 ) ) )
13 breq2 3993 . . . . 5  |-  ( x  =  ( y  x.  z )  ->  (
p  ||  x  <->  p  ||  (
y  x.  z ) ) )
1413rexbidv 2471 . . . 4  |-  ( x  =  ( y  x.  z )  ->  ( E. p  e.  Prime  p 
||  x  <->  E. p  e.  Prime  p  ||  (
y  x.  z ) ) )
1512, 14imbi12d 233 . . 3  |-  ( x  =  ( y  x.  z )  ->  (
( x  e.  (
ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  x )  <->  ( (
y  x.  z )  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  (
y  x.  z ) ) ) )
16 eleq1 2233 . . . 4  |-  ( x  =  N  ->  (
x  e.  ( ZZ>= ` 
2 )  <->  N  e.  ( ZZ>= `  2 )
) )
17 breq2 3993 . . . . 5  |-  ( x  =  N  ->  (
p  ||  x  <->  p  ||  N
) )
1817rexbidv 2471 . . . 4  |-  ( x  =  N  ->  ( E. p  e.  Prime  p 
||  x  <->  E. p  e.  Prime  p  ||  N
) )
1916, 18imbi12d 233 . . 3  |-  ( x  =  N  ->  (
( x  e.  (
ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  x )  <->  ( N  e.  ( ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  N ) ) )
20 1m1e0 8947 . . . . 5  |-  ( 1  -  1 )  =  0
21 uz2m1nn 9564 . . . . 5  |-  ( 1  e.  ( ZZ>= `  2
)  ->  ( 1  -  1 )  e.  NN )
2220, 21eqeltrrid 2258 . . . 4  |-  ( 1  e.  ( ZZ>= `  2
)  ->  0  e.  NN )
23 0nnn 8905 . . . . 5  |-  -.  0  e.  NN
2423pm2.21i 641 . . . 4  |-  ( 0  e.  NN  ->  E. p  e.  Prime  p  ||  x
)
2522, 24syl 14 . . 3  |-  ( 1  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  x
)
26 prmz 12065 . . . . . 6  |-  ( x  e.  Prime  ->  x  e.  ZZ )
27 iddvds 11766 . . . . . 6  |-  ( x  e.  ZZ  ->  x  ||  x )
2826, 27syl 14 . . . . 5  |-  ( x  e.  Prime  ->  x  ||  x )
29 breq1 3992 . . . . . 6  |-  ( p  =  x  ->  (
p  ||  x  <->  x  ||  x
) )
3029rspcev 2834 . . . . 5  |-  ( ( x  e.  Prime  /\  x  ||  x )  ->  E. p  e.  Prime  p  ||  x
)
3128, 30mpdan 419 . . . 4  |-  ( x  e.  Prime  ->  E. p  e.  Prime  p  ||  x
)
3231a1d 22 . . 3  |-  ( x  e.  Prime  ->  ( x  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  x
) )
33 simpl 108 . . . . . 6  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  y  e.  ( ZZ>= `  2 )
)
34 eluzelz 9496 . . . . . . . . . 10  |-  ( y  e.  ( ZZ>= `  2
)  ->  y  e.  ZZ )
3534ad2antrr 485 . . . . . . . . 9  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
y  e.  ZZ )
36 eluzelz 9496 . . . . . . . . . 10  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  ZZ )
3736ad2antlr 486 . . . . . . . . 9  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
z  e.  ZZ )
38 dvdsmul1 11775 . . . . . . . . 9  |-  ( ( y  e.  ZZ  /\  z  e.  ZZ )  ->  y  ||  ( y  x.  z ) )
3935, 37, 38syl2anc 409 . . . . . . . 8  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
y  ||  ( y  x.  z ) )
40 prmz 12065 . . . . . . . . . 10  |-  ( p  e.  Prime  ->  p  e.  ZZ )
4140adantl 275 . . . . . . . . 9  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  ->  p  e.  ZZ )
4235, 37zmulcld 9340 . . . . . . . . 9  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
( y  x.  z
)  e.  ZZ )
43 dvdstr 11790 . . . . . . . . 9  |-  ( ( p  e.  ZZ  /\  y  e.  ZZ  /\  (
y  x.  z )  e.  ZZ )  -> 
( ( p  ||  y  /\  y  ||  (
y  x.  z ) )  ->  p  ||  (
y  x.  z ) ) )
4441, 35, 42, 43syl3anc 1233 . . . . . . . 8  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
( ( p  ||  y  /\  y  ||  (
y  x.  z ) )  ->  p  ||  (
y  x.  z ) ) )
4539, 44mpan2d 426 . . . . . . 7  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
( p  ||  y  ->  p  ||  ( y  x.  z ) ) )
4645reximdva 2572 . . . . . 6  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( E. p  e.  Prime  p  ||  y  ->  E. p  e.  Prime  p 
||  ( y  x.  z ) ) )
4733, 46embantd 56 . . . . 5  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
y  e.  ( ZZ>= ` 
2 )  ->  E. p  e.  Prime  p  ||  y
)  ->  E. p  e.  Prime  p  ||  (
y  x.  z ) ) )
4847a1dd 48 . . . 4  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
y  e.  ( ZZ>= ` 
2 )  ->  E. p  e.  Prime  p  ||  y
)  ->  ( (
y  x.  z )  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  (
y  x.  z ) ) ) )
4948adantrd 277 . . 3  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
( y  e.  (
ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  y )  /\  ( z  e.  (
ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  z ) )  ->  ( ( y  x.  z )  e.  ( ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  ( y  x.  z ) ) ) )
503, 7, 11, 15, 19, 25, 32, 49prmind 12075 . 2  |-  ( N  e.  NN  ->  ( N  e.  ( ZZ>= ` 
2 )  ->  E. p  e.  Prime  p  ||  N
) )
511, 50mpcom 36 1  |-  ( N  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  N
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   E.wrex 2449   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   0cc0 7774   1c1 7775    x. cmul 7779    - cmin 8090   NNcn 8878   2c2 8929   ZZcz 9212   ZZ>=cuz 9487    || cdvds 11749   Primecprime 12061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-prm 12062
This theorem is referenced by:  prmdvdsfz  12093  isprm5lem  12095  rpexp  12107  pc2dvds  12283  oddprmdvds  12306  prmunb  12314  lgsne0  13733
  Copyright terms: Public domain W3C validator