ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exprmfct Unicode version

Theorem exprmfct 12510
Description: Every integer greater than or equal to 2 has a prime factor. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
exprmfct  |-  ( N  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  N
)
Distinct variable group:    N, p

Proof of Theorem exprmfct
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluz2nn 9700 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN )
2 eleq1 2269 . . . 4  |-  ( x  =  1  ->  (
x  e.  ( ZZ>= ` 
2 )  <->  1  e.  ( ZZ>= `  2 )
) )
32imbi1d 231 . . 3  |-  ( x  =  1  ->  (
( x  e.  (
ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  x )  <->  ( 1  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  x
) ) )
4 eleq1 2269 . . . 4  |-  ( x  =  y  ->  (
x  e.  ( ZZ>= ` 
2 )  <->  y  e.  ( ZZ>= `  2 )
) )
5 breq2 4052 . . . . 5  |-  ( x  =  y  ->  (
p  ||  x  <->  p  ||  y
) )
65rexbidv 2508 . . . 4  |-  ( x  =  y  ->  ( E. p  e.  Prime  p 
||  x  <->  E. p  e.  Prime  p  ||  y
) )
74, 6imbi12d 234 . . 3  |-  ( x  =  y  ->  (
( x  e.  (
ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  x )  <->  ( y  e.  ( ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  y ) ) )
8 eleq1 2269 . . . 4  |-  ( x  =  z  ->  (
x  e.  ( ZZ>= ` 
2 )  <->  z  e.  ( ZZ>= `  2 )
) )
9 breq2 4052 . . . . 5  |-  ( x  =  z  ->  (
p  ||  x  <->  p  ||  z
) )
109rexbidv 2508 . . . 4  |-  ( x  =  z  ->  ( E. p  e.  Prime  p 
||  x  <->  E. p  e.  Prime  p  ||  z
) )
118, 10imbi12d 234 . . 3  |-  ( x  =  z  ->  (
( x  e.  (
ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  x )  <->  ( z  e.  ( ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  z ) ) )
12 eleq1 2269 . . . 4  |-  ( x  =  ( y  x.  z )  ->  (
x  e.  ( ZZ>= ` 
2 )  <->  ( y  x.  z )  e.  (
ZZ>= `  2 ) ) )
13 breq2 4052 . . . . 5  |-  ( x  =  ( y  x.  z )  ->  (
p  ||  x  <->  p  ||  (
y  x.  z ) ) )
1413rexbidv 2508 . . . 4  |-  ( x  =  ( y  x.  z )  ->  ( E. p  e.  Prime  p 
||  x  <->  E. p  e.  Prime  p  ||  (
y  x.  z ) ) )
1512, 14imbi12d 234 . . 3  |-  ( x  =  ( y  x.  z )  ->  (
( x  e.  (
ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  x )  <->  ( (
y  x.  z )  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  (
y  x.  z ) ) ) )
16 eleq1 2269 . . . 4  |-  ( x  =  N  ->  (
x  e.  ( ZZ>= ` 
2 )  <->  N  e.  ( ZZ>= `  2 )
) )
17 breq2 4052 . . . . 5  |-  ( x  =  N  ->  (
p  ||  x  <->  p  ||  N
) )
1817rexbidv 2508 . . . 4  |-  ( x  =  N  ->  ( E. p  e.  Prime  p 
||  x  <->  E. p  e.  Prime  p  ||  N
) )
1916, 18imbi12d 234 . . 3  |-  ( x  =  N  ->  (
( x  e.  (
ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  x )  <->  ( N  e.  ( ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  N ) ) )
20 1m1e0 9118 . . . . 5  |-  ( 1  -  1 )  =  0
21 uz2m1nn 9739 . . . . 5  |-  ( 1  e.  ( ZZ>= `  2
)  ->  ( 1  -  1 )  e.  NN )
2220, 21eqeltrrid 2294 . . . 4  |-  ( 1  e.  ( ZZ>= `  2
)  ->  0  e.  NN )
23 0nnn 9076 . . . . 5  |-  -.  0  e.  NN
2423pm2.21i 647 . . . 4  |-  ( 0  e.  NN  ->  E. p  e.  Prime  p  ||  x
)
2522, 24syl 14 . . 3  |-  ( 1  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  x
)
26 prmz 12483 . . . . . 6  |-  ( x  e.  Prime  ->  x  e.  ZZ )
27 iddvds 12165 . . . . . 6  |-  ( x  e.  ZZ  ->  x  ||  x )
2826, 27syl 14 . . . . 5  |-  ( x  e.  Prime  ->  x  ||  x )
29 breq1 4051 . . . . . 6  |-  ( p  =  x  ->  (
p  ||  x  <->  x  ||  x
) )
3029rspcev 2879 . . . . 5  |-  ( ( x  e.  Prime  /\  x  ||  x )  ->  E. p  e.  Prime  p  ||  x
)
3128, 30mpdan 421 . . . 4  |-  ( x  e.  Prime  ->  E. p  e.  Prime  p  ||  x
)
3231a1d 22 . . 3  |-  ( x  e.  Prime  ->  ( x  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  x
) )
33 simpl 109 . . . . . 6  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  y  e.  ( ZZ>= `  2 )
)
34 eluzelz 9670 . . . . . . . . . 10  |-  ( y  e.  ( ZZ>= `  2
)  ->  y  e.  ZZ )
3534ad2antrr 488 . . . . . . . . 9  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
y  e.  ZZ )
36 eluzelz 9670 . . . . . . . . . 10  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  ZZ )
3736ad2antlr 489 . . . . . . . . 9  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
z  e.  ZZ )
38 dvdsmul1 12174 . . . . . . . . 9  |-  ( ( y  e.  ZZ  /\  z  e.  ZZ )  ->  y  ||  ( y  x.  z ) )
3935, 37, 38syl2anc 411 . . . . . . . 8  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
y  ||  ( y  x.  z ) )
40 prmz 12483 . . . . . . . . . 10  |-  ( p  e.  Prime  ->  p  e.  ZZ )
4140adantl 277 . . . . . . . . 9  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  ->  p  e.  ZZ )
4235, 37zmulcld 9514 . . . . . . . . 9  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
( y  x.  z
)  e.  ZZ )
43 dvdstr 12189 . . . . . . . . 9  |-  ( ( p  e.  ZZ  /\  y  e.  ZZ  /\  (
y  x.  z )  e.  ZZ )  -> 
( ( p  ||  y  /\  y  ||  (
y  x.  z ) )  ->  p  ||  (
y  x.  z ) ) )
4441, 35, 42, 43syl3anc 1250 . . . . . . . 8  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
( ( p  ||  y  /\  y  ||  (
y  x.  z ) )  ->  p  ||  (
y  x.  z ) ) )
4539, 44mpan2d 428 . . . . . . 7  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
( p  ||  y  ->  p  ||  ( y  x.  z ) ) )
4645reximdva 2609 . . . . . 6  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( E. p  e.  Prime  p  ||  y  ->  E. p  e.  Prime  p 
||  ( y  x.  z ) ) )
4733, 46embantd 56 . . . . 5  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
y  e.  ( ZZ>= ` 
2 )  ->  E. p  e.  Prime  p  ||  y
)  ->  E. p  e.  Prime  p  ||  (
y  x.  z ) ) )
4847a1dd 48 . . . 4  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
y  e.  ( ZZ>= ` 
2 )  ->  E. p  e.  Prime  p  ||  y
)  ->  ( (
y  x.  z )  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  (
y  x.  z ) ) ) )
4948adantrd 279 . . 3  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
( y  e.  (
ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  y )  /\  ( z  e.  (
ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  z ) )  ->  ( ( y  x.  z )  e.  ( ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  ( y  x.  z ) ) ) )
503, 7, 11, 15, 19, 25, 32, 49prmind 12493 . 2  |-  ( N  e.  NN  ->  ( N  e.  ( ZZ>= ` 
2 )  ->  E. p  e.  Prime  p  ||  N
) )
511, 50mpcom 36 1  |-  ( N  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  N
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   E.wrex 2486   class class class wbr 4048   ` cfv 5277  (class class class)co 5954   0cc0 7938   1c1 7939    x. cmul 7943    - cmin 8256   NNcn 9049   2c2 9100   ZZcz 9385   ZZ>=cuz 9661    || cdvds 12148   Primecprime 12479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056  ax-arch 8057  ax-caucvg 8058
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-frec 6487  df-1o 6512  df-2o 6513  df-er 6630  df-en 6838  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-n0 9309  df-z 9386  df-uz 9662  df-q 9754  df-rp 9789  df-fz 10144  df-fzo 10278  df-fl 10426  df-mod 10481  df-seqfrec 10606  df-exp 10697  df-cj 11203  df-re 11204  df-im 11205  df-rsqrt 11359  df-abs 11360  df-dvds 12149  df-prm 12480
This theorem is referenced by:  prmdvdsfz  12511  isprm5lem  12513  rpexp  12525  pc2dvds  12703  oddprmdvds  12727  prmunb  12735  lgsne0  15565
  Copyright terms: Public domain W3C validator