ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exprmfct Unicode version

Theorem exprmfct 12646
Description: Every integer greater than or equal to 2 has a prime factor. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
exprmfct  |-  ( N  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  N
)
Distinct variable group:    N, p

Proof of Theorem exprmfct
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluz2nn 9749 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN )
2 eleq1 2292 . . . 4  |-  ( x  =  1  ->  (
x  e.  ( ZZ>= ` 
2 )  <->  1  e.  ( ZZ>= `  2 )
) )
32imbi1d 231 . . 3  |-  ( x  =  1  ->  (
( x  e.  (
ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  x )  <->  ( 1  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  x
) ) )
4 eleq1 2292 . . . 4  |-  ( x  =  y  ->  (
x  e.  ( ZZ>= ` 
2 )  <->  y  e.  ( ZZ>= `  2 )
) )
5 breq2 4086 . . . . 5  |-  ( x  =  y  ->  (
p  ||  x  <->  p  ||  y
) )
65rexbidv 2531 . . . 4  |-  ( x  =  y  ->  ( E. p  e.  Prime  p 
||  x  <->  E. p  e.  Prime  p  ||  y
) )
74, 6imbi12d 234 . . 3  |-  ( x  =  y  ->  (
( x  e.  (
ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  x )  <->  ( y  e.  ( ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  y ) ) )
8 eleq1 2292 . . . 4  |-  ( x  =  z  ->  (
x  e.  ( ZZ>= ` 
2 )  <->  z  e.  ( ZZ>= `  2 )
) )
9 breq2 4086 . . . . 5  |-  ( x  =  z  ->  (
p  ||  x  <->  p  ||  z
) )
109rexbidv 2531 . . . 4  |-  ( x  =  z  ->  ( E. p  e.  Prime  p 
||  x  <->  E. p  e.  Prime  p  ||  z
) )
118, 10imbi12d 234 . . 3  |-  ( x  =  z  ->  (
( x  e.  (
ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  x )  <->  ( z  e.  ( ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  z ) ) )
12 eleq1 2292 . . . 4  |-  ( x  =  ( y  x.  z )  ->  (
x  e.  ( ZZ>= ` 
2 )  <->  ( y  x.  z )  e.  (
ZZ>= `  2 ) ) )
13 breq2 4086 . . . . 5  |-  ( x  =  ( y  x.  z )  ->  (
p  ||  x  <->  p  ||  (
y  x.  z ) ) )
1413rexbidv 2531 . . . 4  |-  ( x  =  ( y  x.  z )  ->  ( E. p  e.  Prime  p 
||  x  <->  E. p  e.  Prime  p  ||  (
y  x.  z ) ) )
1512, 14imbi12d 234 . . 3  |-  ( x  =  ( y  x.  z )  ->  (
( x  e.  (
ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  x )  <->  ( (
y  x.  z )  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  (
y  x.  z ) ) ) )
16 eleq1 2292 . . . 4  |-  ( x  =  N  ->  (
x  e.  ( ZZ>= ` 
2 )  <->  N  e.  ( ZZ>= `  2 )
) )
17 breq2 4086 . . . . 5  |-  ( x  =  N  ->  (
p  ||  x  <->  p  ||  N
) )
1817rexbidv 2531 . . . 4  |-  ( x  =  N  ->  ( E. p  e.  Prime  p 
||  x  <->  E. p  e.  Prime  p  ||  N
) )
1916, 18imbi12d 234 . . 3  |-  ( x  =  N  ->  (
( x  e.  (
ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  x )  <->  ( N  e.  ( ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  N ) ) )
20 1m1e0 9167 . . . . 5  |-  ( 1  -  1 )  =  0
21 uz2m1nn 9788 . . . . 5  |-  ( 1  e.  ( ZZ>= `  2
)  ->  ( 1  -  1 )  e.  NN )
2220, 21eqeltrrid 2317 . . . 4  |-  ( 1  e.  ( ZZ>= `  2
)  ->  0  e.  NN )
23 0nnn 9125 . . . . 5  |-  -.  0  e.  NN
2423pm2.21i 649 . . . 4  |-  ( 0  e.  NN  ->  E. p  e.  Prime  p  ||  x
)
2522, 24syl 14 . . 3  |-  ( 1  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  x
)
26 prmz 12619 . . . . . 6  |-  ( x  e.  Prime  ->  x  e.  ZZ )
27 iddvds 12301 . . . . . 6  |-  ( x  e.  ZZ  ->  x  ||  x )
2826, 27syl 14 . . . . 5  |-  ( x  e.  Prime  ->  x  ||  x )
29 breq1 4085 . . . . . 6  |-  ( p  =  x  ->  (
p  ||  x  <->  x  ||  x
) )
3029rspcev 2907 . . . . 5  |-  ( ( x  e.  Prime  /\  x  ||  x )  ->  E. p  e.  Prime  p  ||  x
)
3128, 30mpdan 421 . . . 4  |-  ( x  e.  Prime  ->  E. p  e.  Prime  p  ||  x
)
3231a1d 22 . . 3  |-  ( x  e.  Prime  ->  ( x  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  x
) )
33 simpl 109 . . . . . 6  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  y  e.  ( ZZ>= `  2 )
)
34 eluzelz 9719 . . . . . . . . . 10  |-  ( y  e.  ( ZZ>= `  2
)  ->  y  e.  ZZ )
3534ad2antrr 488 . . . . . . . . 9  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
y  e.  ZZ )
36 eluzelz 9719 . . . . . . . . . 10  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  ZZ )
3736ad2antlr 489 . . . . . . . . 9  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
z  e.  ZZ )
38 dvdsmul1 12310 . . . . . . . . 9  |-  ( ( y  e.  ZZ  /\  z  e.  ZZ )  ->  y  ||  ( y  x.  z ) )
3935, 37, 38syl2anc 411 . . . . . . . 8  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
y  ||  ( y  x.  z ) )
40 prmz 12619 . . . . . . . . . 10  |-  ( p  e.  Prime  ->  p  e.  ZZ )
4140adantl 277 . . . . . . . . 9  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  ->  p  e.  ZZ )
4235, 37zmulcld 9563 . . . . . . . . 9  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
( y  x.  z
)  e.  ZZ )
43 dvdstr 12325 . . . . . . . . 9  |-  ( ( p  e.  ZZ  /\  y  e.  ZZ  /\  (
y  x.  z )  e.  ZZ )  -> 
( ( p  ||  y  /\  y  ||  (
y  x.  z ) )  ->  p  ||  (
y  x.  z ) ) )
4441, 35, 42, 43syl3anc 1271 . . . . . . . 8  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
( ( p  ||  y  /\  y  ||  (
y  x.  z ) )  ->  p  ||  (
y  x.  z ) ) )
4539, 44mpan2d 428 . . . . . . 7  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
( p  ||  y  ->  p  ||  ( y  x.  z ) ) )
4645reximdva 2632 . . . . . 6  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( E. p  e.  Prime  p  ||  y  ->  E. p  e.  Prime  p 
||  ( y  x.  z ) ) )
4733, 46embantd 56 . . . . 5  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
y  e.  ( ZZ>= ` 
2 )  ->  E. p  e.  Prime  p  ||  y
)  ->  E. p  e.  Prime  p  ||  (
y  x.  z ) ) )
4847a1dd 48 . . . 4  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
y  e.  ( ZZ>= ` 
2 )  ->  E. p  e.  Prime  p  ||  y
)  ->  ( (
y  x.  z )  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  (
y  x.  z ) ) ) )
4948adantrd 279 . . 3  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
( y  e.  (
ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  y )  /\  ( z  e.  (
ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  z ) )  ->  ( ( y  x.  z )  e.  ( ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  ( y  x.  z ) ) ) )
503, 7, 11, 15, 19, 25, 32, 49prmind 12629 . 2  |-  ( N  e.  NN  ->  ( N  e.  ( ZZ>= ` 
2 )  ->  E. p  e.  Prime  p  ||  N
) )
511, 50mpcom 36 1  |-  ( N  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  N
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   E.wrex 2509   class class class wbr 4082   ` cfv 5314  (class class class)co 5994   0cc0 7987   1c1 7988    x. cmul 7992    - cmin 8305   NNcn 9098   2c2 9149   ZZcz 9434   ZZ>=cuz 9710    || cdvds 12284   Primecprime 12615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-1o 6552  df-2o 6553  df-er 6670  df-en 6878  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-dvds 12285  df-prm 12616
This theorem is referenced by:  prmdvdsfz  12647  isprm5lem  12649  rpexp  12661  pc2dvds  12839  oddprmdvds  12863  prmunb  12871  lgsne0  15702
  Copyright terms: Public domain W3C validator