ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2irr Unicode version

Theorem sqrt2irr 12357
Description: The square root of 2 is not rational. That is, for any rational number,  ( sqr `  2
) does not equal it. However, if we were to say "the square root of 2 is irrational" that would mean something stronger: "for any rational number, 
( sqr `  2
) is apart from it" (the two statements are equivalent given excluded middle). See sqrt2irrap 12375 for the proof that the square root of two is irrational.

The proof's core is proven in sqrt2irrlem 12356, which shows that if  A  /  B  =  sqr ( 2 ), then 
A and  B are even, so  A  /  2 and  B  /  2 are smaller representatives, which is absurd. (Contributed by NM, 8-Jan-2002.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)

Assertion
Ref Expression
sqrt2irr  |-  ( sqr `  2 )  e/  QQ

Proof of Theorem sqrt2irr
Dummy variables  x  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2nn 9021 . . . . . 6  |-  ( y  e.  NN  ->  (
y  +  1 )  e.  NN )
2 breq2 4038 . . . . . . . . 9  |-  ( n  =  1  ->  (
z  <  n  <->  z  <  1 ) )
32imbi1d 231 . . . . . . . 8  |-  ( n  =  1  ->  (
( z  <  n  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  ( z  <  1  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
43ralbidv 2497 . . . . . . 7  |-  ( n  =  1  ->  ( A. z  e.  NN  ( z  <  n  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  A. z  e.  NN  ( z  <  1  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
5 breq2 4038 . . . . . . . . 9  |-  ( n  =  y  ->  (
z  <  n  <->  z  <  y ) )
65imbi1d 231 . . . . . . . 8  |-  ( n  =  y  ->  (
( z  <  n  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
76ralbidv 2497 . . . . . . 7  |-  ( n  =  y  ->  ( A. z  e.  NN  ( z  <  n  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  A. z  e.  NN  ( z  < 
y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
8 breq2 4038 . . . . . . . . 9  |-  ( n  =  ( y  +  1 )  ->  (
z  <  n  <->  z  <  ( y  +  1 ) ) )
98imbi1d 231 . . . . . . . 8  |-  ( n  =  ( y  +  1 )  ->  (
( z  <  n  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  ( z  <  ( y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
109ralbidv 2497 . . . . . . 7  |-  ( n  =  ( y  +  1 )  ->  ( A. z  e.  NN  ( z  <  n  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  A. z  e.  NN  ( z  < 
( y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
11 nnnlt1 9035 . . . . . . . . 9  |-  ( z  e.  NN  ->  -.  z  <  1 )
1211pm2.21d 620 . . . . . . . 8  |-  ( z  e.  NN  ->  (
z  <  1  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  /  z
) ) )
1312rgen 2550 . . . . . . 7  |-  A. z  e.  NN  ( z  <  1  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )
14 nnrp 9757 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  y  e.  RR+ )
15 rphalflt 9777 . . . . . . . . . . . . . 14  |-  ( y  e.  RR+  ->  ( y  /  2 )  < 
y )
1614, 15syl 14 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
y  /  2 )  <  y )
17 breq1 4037 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( y  / 
2 )  ->  (
z  <  y  <->  ( y  /  2 )  < 
y ) )
18 oveq2 5933 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( y  / 
2 )  ->  (
x  /  z )  =  ( x  / 
( y  /  2
) ) )
1918neeq2d 2386 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( y  / 
2 )  ->  (
( sqr `  2
)  =/=  ( x  /  z )  <->  ( sqr `  2 )  =/=  (
x  /  ( y  /  2 ) ) ) )
2019ralbidv 2497 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( y  / 
2 )  ->  ( A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z )  <->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) ) ) )
2117, 20imbi12d 234 . . . . . . . . . . . . . . 15  |-  ( z  =  ( y  / 
2 )  ->  (
( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  ( (
y  /  2 )  <  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) ) ) ) )
2221rspcv 2864 . . . . . . . . . . . . . 14  |-  ( ( y  /  2 )  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  -> 
( ( y  / 
2 )  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
( y  /  2
) ) ) ) )
2322com13 80 . . . . . . . . . . . . 13  |-  ( ( y  /  2 )  <  y  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  -> 
( ( y  / 
2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
( y  /  2
) ) ) ) )
2416, 23syl 14 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  -> 
( ( y  / 
2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
( y  /  2
) ) ) ) )
25 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( sqr `  2
)  =  ( z  /  y ) )
26 zcn 9350 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ZZ  ->  z  e.  CC )
2726ad2antlr 489 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  z  e.  CC )
28 nncn 9017 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  NN  ->  y  e.  CC )
2928ad2antrr 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  y  e.  CC )
30 2cnd 9082 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  2  e.  CC )
31 nnap0 9038 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  NN  ->  y #  0 )
3231ad2antrr 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  y #  0 )
33 2ap0 9102 . . . . . . . . . . . . . . . . . . 19  |-  2 #  0
3433a1i 9 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  2 #  0 )
3527, 29, 30, 32, 34divcanap7d 8865 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( ( z  /  2 )  / 
( y  /  2
) )  =  ( z  /  y ) )
3625, 35eqtr4d 2232 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( sqr `  2
)  =  ( ( z  /  2 )  /  ( y  / 
2 ) ) )
37 simplr 528 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  z  e.  ZZ )
38 simpll 527 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  y  e.  NN )
3937, 38, 25sqrt2irrlem 12356 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( ( z  /  2 )  e.  ZZ  /\  ( y  /  2 )  e.  NN ) )
4039simprd 114 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( y  / 
2 )  e.  NN )
4139simpld 112 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( z  / 
2 )  e.  ZZ )
42 oveq1 5932 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  ( z  / 
2 )  ->  (
x  /  ( y  /  2 ) )  =  ( ( z  /  2 )  / 
( y  /  2
) ) )
4342neeq2d 2386 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  ( z  / 
2 )  ->  (
( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) )  <->  ( sqr `  2 )  =/=  (
( z  /  2
)  /  ( y  /  2 ) ) ) )
4443rspcv 2864 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  /  2 )  e.  ZZ  ->  ( A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
( y  /  2
) )  ->  ( sqr `  2 )  =/=  ( ( z  / 
2 )  /  (
y  /  2 ) ) ) )
4541, 44syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) )  -> 
( sqr `  2
)  =/=  ( ( z  /  2 )  /  ( y  / 
2 ) ) ) )
4640, 45embantd 56 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( ( ( y  /  2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) ) )  ->  ( sqr `  2
)  =/=  ( ( z  /  2 )  /  ( y  / 
2 ) ) ) )
4746necon2bd 2425 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( ( sqr `  2 )  =  ( ( z  / 
2 )  /  (
y  /  2 ) )  ->  -.  (
( y  /  2
)  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  /  (
y  /  2 ) ) ) ) )
4836, 47mpd 13 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  -.  ( (
y  /  2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) ) ) )
4948ex 115 . . . . . . . . . . . . . 14  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  ( ( sqr `  2
)  =  ( z  /  y )  ->  -.  ( ( y  / 
2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
( y  /  2
) ) ) ) )
5049necon2ad 2424 . . . . . . . . . . . . 13  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  ( ( ( y  /  2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) ) )  ->  ( sqr `  2
)  =/=  ( z  /  y ) ) )
5150ralrimdva 2577 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
( ( y  / 
2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
( y  /  2
) ) )  ->  A. z  e.  ZZ  ( sqr `  2 )  =/=  ( z  / 
y ) ) )
5224, 51syld 45 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  ->  A. z  e.  ZZ  ( sqr `  2 )  =/=  ( z  / 
y ) ) )
53 oveq1 5932 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
x  /  y )  =  ( z  / 
y ) )
5453neeq2d 2386 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
( sqr `  2
)  =/=  ( x  /  y )  <->  ( sqr `  2 )  =/=  (
z  /  y ) ) )
5554cbvralv 2729 . . . . . . . . . . 11  |-  ( A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  /  y
)  <->  A. z  e.  ZZ  ( sqr `  2 )  =/=  ( z  / 
y ) )
5652, 55imbitrrdi 162 . . . . . . . . . 10  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
y ) ) )
57 oveq2 5933 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  (
x  /  z )  =  ( x  / 
y ) )
5857neeq2d 2386 . . . . . . . . . . . 12  |-  ( z  =  y  ->  (
( sqr `  2
)  =/=  ( x  /  z )  <->  ( sqr `  2 )  =/=  (
x  /  y ) ) )
5958ralbidv 2497 . . . . . . . . . . 11  |-  ( z  =  y  ->  ( A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z )  <->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  y ) ) )
6059ceqsralv 2794 . . . . . . . . . 10  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  y ) ) )
6156, 60sylibrd 169 . . . . . . . . 9  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  ->  A. z  e.  NN  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) ) ) )
6261ancld 325 . . . . . . . 8  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  -> 
( A. z  e.  NN  ( z  < 
y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  /\  A. z  e.  NN  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) ) )
63 nnleltp1 9404 . . . . . . . . . . . . . 14  |-  ( ( z  e.  NN  /\  y  e.  NN )  ->  ( z  <_  y  <->  z  <  ( y  +  1 ) ) )
64 nnz 9364 . . . . . . . . . . . . . . 15  |-  ( z  e.  NN  ->  z  e.  ZZ )
65 nnz 9364 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  y  e.  ZZ )
66 zleloe 9392 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ZZ  /\  y  e.  ZZ )  ->  ( z  <_  y  <->  ( z  <  y  \/  z  =  y ) ) )
6764, 65, 66syl2an 289 . . . . . . . . . . . . . 14  |-  ( ( z  e.  NN  /\  y  e.  NN )  ->  ( z  <_  y  <->  ( z  <  y  \/  z  =  y ) ) )
6863, 67bitr3d 190 . . . . . . . . . . . . 13  |-  ( ( z  e.  NN  /\  y  e.  NN )  ->  ( z  <  (
y  +  1 )  <-> 
( z  <  y  \/  z  =  y
) ) )
6968ancoms 268 . . . . . . . . . . . 12  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( z  <  (
y  +  1 )  <-> 
( z  <  y  \/  z  =  y
) ) )
7069imbi1d 231 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( ( z  < 
( y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  <-> 
( ( z  < 
y  \/  z  =  y )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
71 jaob 711 . . . . . . . . . . 11  |-  ( ( ( z  <  y  \/  z  =  y
)  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  <-> 
( ( z  < 
y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  /\  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
7270, 71bitrdi 196 . . . . . . . . . 10  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( ( z  < 
( y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  <-> 
( ( z  < 
y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  /\  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) ) )
7372ralbidva 2493 . . . . . . . . 9  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  (
y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  A. z  e.  NN  ( ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  /\  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) ) )
74 r19.26 2623 . . . . . . . . 9  |-  ( A. z  e.  NN  (
( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  /\  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) ) )  <-> 
( A. z  e.  NN  ( z  < 
y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  /\  A. z  e.  NN  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
7573, 74bitrdi 196 . . . . . . . 8  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  (
y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  ( A. z  e.  NN  (
z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  /  z
) )  /\  A. z  e.  NN  (
z  =  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) ) ) ) )
7662, 75sylibrd 169 . . . . . . 7  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  ->  A. z  e.  NN  ( z  <  (
y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) ) ) )
774, 7, 10, 10, 13, 76nnind 9025 . . . . . 6  |-  ( ( y  +  1 )  e.  NN  ->  A. z  e.  NN  ( z  < 
( y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) )
781, 77syl 14 . . . . 5  |-  ( y  e.  NN  ->  A. z  e.  NN  ( z  < 
( y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) )
79 nnre 9016 . . . . . 6  |-  ( y  e.  NN  ->  y  e.  RR )
8079ltp1d 8976 . . . . 5  |-  ( y  e.  NN  ->  y  <  ( y  +  1 ) )
81 breq1 4037 . . . . . . 7  |-  ( z  =  y  ->  (
z  <  ( y  +  1 )  <->  y  <  ( y  +  1 ) ) )
82 df-ne 2368 . . . . . . . . . 10  |-  ( ( sqr `  2 )  =/=  ( x  / 
y )  <->  -.  ( sqr `  2 )  =  ( x  /  y
) )
8358, 82bitrdi 196 . . . . . . . . 9  |-  ( z  =  y  ->  (
( sqr `  2
)  =/=  ( x  /  z )  <->  -.  ( sqr `  2 )  =  ( x  /  y
) ) )
8483ralbidv 2497 . . . . . . . 8  |-  ( z  =  y  ->  ( A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z )  <->  A. x  e.  ZZ  -.  ( sqr `  2 )  =  ( x  /  y
) ) )
85 ralnex 2485 . . . . . . . 8  |-  ( A. x  e.  ZZ  -.  ( sqr `  2 )  =  ( x  / 
y )  <->  -.  E. x  e.  ZZ  ( sqr `  2
)  =  ( x  /  y ) )
8684, 85bitrdi 196 . . . . . . 7  |-  ( z  =  y  ->  ( A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z )  <->  -.  E. x  e.  ZZ  ( sqr `  2
)  =  ( x  /  y ) ) )
8781, 86imbi12d 234 . . . . . 6  |-  ( z  =  y  ->  (
( z  <  (
y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  ( y  <  ( y  +  1 )  ->  -.  E. x  e.  ZZ  ( sqr `  2
)  =  ( x  /  y ) ) ) )
8887rspcv 2864 . . . . 5  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  (
y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  -> 
( y  <  (
y  +  1 )  ->  -.  E. x  e.  ZZ  ( sqr `  2
)  =  ( x  /  y ) ) ) )
8978, 80, 88mp2d 47 . . . 4  |-  ( y  e.  NN  ->  -.  E. x  e.  ZZ  ( sqr `  2 )  =  ( x  /  y
) )
9089nrex 2589 . . 3  |-  -.  E. y  e.  NN  E. x  e.  ZZ  ( sqr `  2
)  =  ( x  /  y )
91 elq 9715 . . . 4  |-  ( ( sqr `  2 )  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  ( sqr `  2
)  =  ( x  /  y ) )
92 rexcom 2661 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  NN  ( sqr `  2 )  =  ( x  /  y
)  <->  E. y  e.  NN  E. x  e.  ZZ  ( sqr `  2 )  =  ( x  /  y
) )
9391, 92bitri 184 . . 3  |-  ( ( sqr `  2 )  e.  QQ  <->  E. y  e.  NN  E. x  e.  ZZ  ( sqr `  2
)  =  ( x  /  y ) )
9490, 93mtbir 672 . 2  |-  -.  ( sqr `  2 )  e.  QQ
9594nelir 2465 1  |-  ( sqr `  2 )  e/  QQ
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167    =/= wne 2367    e/ wnel 2462   A.wral 2475   E.wrex 2476   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7896   0cc0 7898   1c1 7899    + caddc 7901    < clt 8080    <_ cle 8081   # cap 8627    / cdiv 8718   NNcn 9009   2c2 9060   ZZcz 9345   QQcq 9712   RR+crp 9747   sqrcsqrt 11180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-seqfrec 10559  df-exp 10650  df-rsqrt 11182
This theorem is referenced by:  sqrt2irr0  12359
  Copyright terms: Public domain W3C validator