ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2irr Unicode version

Theorem sqrt2irr 12161
Description: The square root of 2 is not rational. That is, for any rational number,  ( sqr `  2
) does not equal it. However, if we were to say "the square root of 2 is irrational" that would mean something stronger: "for any rational number, 
( sqr `  2
) is apart from it" (the two statements are equivalent given excluded middle). See sqrt2irrap 12179 for the proof that the square root of two is irrational.

The proof's core is proven in sqrt2irrlem 12160, which shows that if  A  /  B  =  sqr ( 2 ), then 
A and  B are even, so  A  /  2 and  B  /  2 are smaller representatives, which is absurd. (Contributed by NM, 8-Jan-2002.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)

Assertion
Ref Expression
sqrt2irr  |-  ( sqr `  2 )  e/  QQ

Proof of Theorem sqrt2irr
Dummy variables  x  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2nn 8930 . . . . . 6  |-  ( y  e.  NN  ->  (
y  +  1 )  e.  NN )
2 breq2 4007 . . . . . . . . 9  |-  ( n  =  1  ->  (
z  <  n  <->  z  <  1 ) )
32imbi1d 231 . . . . . . . 8  |-  ( n  =  1  ->  (
( z  <  n  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  ( z  <  1  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
43ralbidv 2477 . . . . . . 7  |-  ( n  =  1  ->  ( A. z  e.  NN  ( z  <  n  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  A. z  e.  NN  ( z  <  1  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
5 breq2 4007 . . . . . . . . 9  |-  ( n  =  y  ->  (
z  <  n  <->  z  <  y ) )
65imbi1d 231 . . . . . . . 8  |-  ( n  =  y  ->  (
( z  <  n  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
76ralbidv 2477 . . . . . . 7  |-  ( n  =  y  ->  ( A. z  e.  NN  ( z  <  n  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  A. z  e.  NN  ( z  < 
y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
8 breq2 4007 . . . . . . . . 9  |-  ( n  =  ( y  +  1 )  ->  (
z  <  n  <->  z  <  ( y  +  1 ) ) )
98imbi1d 231 . . . . . . . 8  |-  ( n  =  ( y  +  1 )  ->  (
( z  <  n  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  ( z  <  ( y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
109ralbidv 2477 . . . . . . 7  |-  ( n  =  ( y  +  1 )  ->  ( A. z  e.  NN  ( z  <  n  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  A. z  e.  NN  ( z  < 
( y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
11 nnnlt1 8944 . . . . . . . . 9  |-  ( z  e.  NN  ->  -.  z  <  1 )
1211pm2.21d 619 . . . . . . . 8  |-  ( z  e.  NN  ->  (
z  <  1  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  /  z
) ) )
1312rgen 2530 . . . . . . 7  |-  A. z  e.  NN  ( z  <  1  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )
14 nnrp 9662 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  y  e.  RR+ )
15 rphalflt 9682 . . . . . . . . . . . . . 14  |-  ( y  e.  RR+  ->  ( y  /  2 )  < 
y )
1614, 15syl 14 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
y  /  2 )  <  y )
17 breq1 4006 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( y  / 
2 )  ->  (
z  <  y  <->  ( y  /  2 )  < 
y ) )
18 oveq2 5882 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( y  / 
2 )  ->  (
x  /  z )  =  ( x  / 
( y  /  2
) ) )
1918neeq2d 2366 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( y  / 
2 )  ->  (
( sqr `  2
)  =/=  ( x  /  z )  <->  ( sqr `  2 )  =/=  (
x  /  ( y  /  2 ) ) ) )
2019ralbidv 2477 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( y  / 
2 )  ->  ( A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z )  <->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) ) ) )
2117, 20imbi12d 234 . . . . . . . . . . . . . . 15  |-  ( z  =  ( y  / 
2 )  ->  (
( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  ( (
y  /  2 )  <  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) ) ) ) )
2221rspcv 2837 . . . . . . . . . . . . . 14  |-  ( ( y  /  2 )  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  -> 
( ( y  / 
2 )  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
( y  /  2
) ) ) ) )
2322com13 80 . . . . . . . . . . . . 13  |-  ( ( y  /  2 )  <  y  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  -> 
( ( y  / 
2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
( y  /  2
) ) ) ) )
2416, 23syl 14 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  -> 
( ( y  / 
2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
( y  /  2
) ) ) ) )
25 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( sqr `  2
)  =  ( z  /  y ) )
26 zcn 9257 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ZZ  ->  z  e.  CC )
2726ad2antlr 489 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  z  e.  CC )
28 nncn 8926 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  NN  ->  y  e.  CC )
2928ad2antrr 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  y  e.  CC )
30 2cnd 8991 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  2  e.  CC )
31 nnap0 8947 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  NN  ->  y #  0 )
3231ad2antrr 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  y #  0 )
33 2ap0 9011 . . . . . . . . . . . . . . . . . . 19  |-  2 #  0
3433a1i 9 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  2 #  0 )
3527, 29, 30, 32, 34divcanap7d 8775 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( ( z  /  2 )  / 
( y  /  2
) )  =  ( z  /  y ) )
3625, 35eqtr4d 2213 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( sqr `  2
)  =  ( ( z  /  2 )  /  ( y  / 
2 ) ) )
37 simplr 528 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  z  e.  ZZ )
38 simpll 527 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  y  e.  NN )
3937, 38, 25sqrt2irrlem 12160 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( ( z  /  2 )  e.  ZZ  /\  ( y  /  2 )  e.  NN ) )
4039simprd 114 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( y  / 
2 )  e.  NN )
4139simpld 112 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( z  / 
2 )  e.  ZZ )
42 oveq1 5881 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  ( z  / 
2 )  ->  (
x  /  ( y  /  2 ) )  =  ( ( z  /  2 )  / 
( y  /  2
) ) )
4342neeq2d 2366 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  ( z  / 
2 )  ->  (
( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) )  <->  ( sqr `  2 )  =/=  (
( z  /  2
)  /  ( y  /  2 ) ) ) )
4443rspcv 2837 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  /  2 )  e.  ZZ  ->  ( A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
( y  /  2
) )  ->  ( sqr `  2 )  =/=  ( ( z  / 
2 )  /  (
y  /  2 ) ) ) )
4541, 44syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) )  -> 
( sqr `  2
)  =/=  ( ( z  /  2 )  /  ( y  / 
2 ) ) ) )
4640, 45embantd 56 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( ( ( y  /  2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) ) )  ->  ( sqr `  2
)  =/=  ( ( z  /  2 )  /  ( y  / 
2 ) ) ) )
4746necon2bd 2405 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( ( sqr `  2 )  =  ( ( z  / 
2 )  /  (
y  /  2 ) )  ->  -.  (
( y  /  2
)  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  /  (
y  /  2 ) ) ) ) )
4836, 47mpd 13 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  -.  ( (
y  /  2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) ) ) )
4948ex 115 . . . . . . . . . . . . . 14  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  ( ( sqr `  2
)  =  ( z  /  y )  ->  -.  ( ( y  / 
2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
( y  /  2
) ) ) ) )
5049necon2ad 2404 . . . . . . . . . . . . 13  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  ( ( ( y  /  2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) ) )  ->  ( sqr `  2
)  =/=  ( z  /  y ) ) )
5150ralrimdva 2557 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
( ( y  / 
2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
( y  /  2
) ) )  ->  A. z  e.  ZZ  ( sqr `  2 )  =/=  ( z  / 
y ) ) )
5224, 51syld 45 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  ->  A. z  e.  ZZ  ( sqr `  2 )  =/=  ( z  / 
y ) ) )
53 oveq1 5881 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
x  /  y )  =  ( z  / 
y ) )
5453neeq2d 2366 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
( sqr `  2
)  =/=  ( x  /  y )  <->  ( sqr `  2 )  =/=  (
z  /  y ) ) )
5554cbvralv 2703 . . . . . . . . . . 11  |-  ( A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  /  y
)  <->  A. z  e.  ZZ  ( sqr `  2 )  =/=  ( z  / 
y ) )
5652, 55imbitrrdi 162 . . . . . . . . . 10  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
y ) ) )
57 oveq2 5882 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  (
x  /  z )  =  ( x  / 
y ) )
5857neeq2d 2366 . . . . . . . . . . . 12  |-  ( z  =  y  ->  (
( sqr `  2
)  =/=  ( x  /  z )  <->  ( sqr `  2 )  =/=  (
x  /  y ) ) )
5958ralbidv 2477 . . . . . . . . . . 11  |-  ( z  =  y  ->  ( A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z )  <->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  y ) ) )
6059ceqsralv 2768 . . . . . . . . . 10  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  y ) ) )
6156, 60sylibrd 169 . . . . . . . . 9  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  ->  A. z  e.  NN  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) ) ) )
6261ancld 325 . . . . . . . 8  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  -> 
( A. z  e.  NN  ( z  < 
y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  /\  A. z  e.  NN  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) ) )
63 nnleltp1 9311 . . . . . . . . . . . . . 14  |-  ( ( z  e.  NN  /\  y  e.  NN )  ->  ( z  <_  y  <->  z  <  ( y  +  1 ) ) )
64 nnz 9271 . . . . . . . . . . . . . . 15  |-  ( z  e.  NN  ->  z  e.  ZZ )
65 nnz 9271 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  y  e.  ZZ )
66 zleloe 9299 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ZZ  /\  y  e.  ZZ )  ->  ( z  <_  y  <->  ( z  <  y  \/  z  =  y ) ) )
6764, 65, 66syl2an 289 . . . . . . . . . . . . . 14  |-  ( ( z  e.  NN  /\  y  e.  NN )  ->  ( z  <_  y  <->  ( z  <  y  \/  z  =  y ) ) )
6863, 67bitr3d 190 . . . . . . . . . . . . 13  |-  ( ( z  e.  NN  /\  y  e.  NN )  ->  ( z  <  (
y  +  1 )  <-> 
( z  <  y  \/  z  =  y
) ) )
6968ancoms 268 . . . . . . . . . . . 12  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( z  <  (
y  +  1 )  <-> 
( z  <  y  \/  z  =  y
) ) )
7069imbi1d 231 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( ( z  < 
( y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  <-> 
( ( z  < 
y  \/  z  =  y )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
71 jaob 710 . . . . . . . . . . 11  |-  ( ( ( z  <  y  \/  z  =  y
)  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  <-> 
( ( z  < 
y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  /\  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
7270, 71bitrdi 196 . . . . . . . . . 10  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( ( z  < 
( y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  <-> 
( ( z  < 
y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  /\  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) ) )
7372ralbidva 2473 . . . . . . . . 9  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  (
y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  A. z  e.  NN  ( ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  /\  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) ) )
74 r19.26 2603 . . . . . . . . 9  |-  ( A. z  e.  NN  (
( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  /\  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) ) )  <-> 
( A. z  e.  NN  ( z  < 
y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  /\  A. z  e.  NN  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
7573, 74bitrdi 196 . . . . . . . 8  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  (
y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  ( A. z  e.  NN  (
z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  /  z
) )  /\  A. z  e.  NN  (
z  =  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) ) ) ) )
7662, 75sylibrd 169 . . . . . . 7  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  ->  A. z  e.  NN  ( z  <  (
y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) ) ) )
774, 7, 10, 10, 13, 76nnind 8934 . . . . . 6  |-  ( ( y  +  1 )  e.  NN  ->  A. z  e.  NN  ( z  < 
( y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) )
781, 77syl 14 . . . . 5  |-  ( y  e.  NN  ->  A. z  e.  NN  ( z  < 
( y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) )
79 nnre 8925 . . . . . 6  |-  ( y  e.  NN  ->  y  e.  RR )
8079ltp1d 8886 . . . . 5  |-  ( y  e.  NN  ->  y  <  ( y  +  1 ) )
81 breq1 4006 . . . . . . 7  |-  ( z  =  y  ->  (
z  <  ( y  +  1 )  <->  y  <  ( y  +  1 ) ) )
82 df-ne 2348 . . . . . . . . . 10  |-  ( ( sqr `  2 )  =/=  ( x  / 
y )  <->  -.  ( sqr `  2 )  =  ( x  /  y
) )
8358, 82bitrdi 196 . . . . . . . . 9  |-  ( z  =  y  ->  (
( sqr `  2
)  =/=  ( x  /  z )  <->  -.  ( sqr `  2 )  =  ( x  /  y
) ) )
8483ralbidv 2477 . . . . . . . 8  |-  ( z  =  y  ->  ( A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z )  <->  A. x  e.  ZZ  -.  ( sqr `  2 )  =  ( x  /  y
) ) )
85 ralnex 2465 . . . . . . . 8  |-  ( A. x  e.  ZZ  -.  ( sqr `  2 )  =  ( x  / 
y )  <->  -.  E. x  e.  ZZ  ( sqr `  2
)  =  ( x  /  y ) )
8684, 85bitrdi 196 . . . . . . 7  |-  ( z  =  y  ->  ( A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z )  <->  -.  E. x  e.  ZZ  ( sqr `  2
)  =  ( x  /  y ) ) )
8781, 86imbi12d 234 . . . . . 6  |-  ( z  =  y  ->  (
( z  <  (
y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  ( y  <  ( y  +  1 )  ->  -.  E. x  e.  ZZ  ( sqr `  2
)  =  ( x  /  y ) ) ) )
8887rspcv 2837 . . . . 5  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  (
y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  -> 
( y  <  (
y  +  1 )  ->  -.  E. x  e.  ZZ  ( sqr `  2
)  =  ( x  /  y ) ) ) )
8978, 80, 88mp2d 47 . . . 4  |-  ( y  e.  NN  ->  -.  E. x  e.  ZZ  ( sqr `  2 )  =  ( x  /  y
) )
9089nrex 2569 . . 3  |-  -.  E. y  e.  NN  E. x  e.  ZZ  ( sqr `  2
)  =  ( x  /  y )
91 elq 9621 . . . 4  |-  ( ( sqr `  2 )  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  ( sqr `  2
)  =  ( x  /  y ) )
92 rexcom 2641 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  NN  ( sqr `  2 )  =  ( x  /  y
)  <->  E. y  e.  NN  E. x  e.  ZZ  ( sqr `  2 )  =  ( x  /  y
) )
9391, 92bitri 184 . . 3  |-  ( ( sqr `  2 )  e.  QQ  <->  E. y  e.  NN  E. x  e.  ZZ  ( sqr `  2
)  =  ( x  /  y ) )
9490, 93mtbir 671 . 2  |-  -.  ( sqr `  2 )  e.  QQ
9594nelir 2445 1  |-  ( sqr `  2 )  e/  QQ
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353    e. wcel 2148    =/= wne 2347    e/ wnel 2442   A.wral 2455   E.wrex 2456   class class class wbr 4003   ` cfv 5216  (class class class)co 5874   CCcc 7808   0cc0 7810   1c1 7811    + caddc 7813    < clt 7991    <_ cle 7992   # cap 8537    / cdiv 8628   NNcn 8918   2c2 8969   ZZcz 9252   QQcq 9618   RR+crp 9652   sqrcsqrt 11004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-2 8977  df-3 8978  df-4 8979  df-n0 9176  df-z 9253  df-uz 9528  df-q 9619  df-rp 9653  df-seqfrec 10445  df-exp 10519  df-rsqrt 11006
This theorem is referenced by:  sqrt2irr0  12163
  Copyright terms: Public domain W3C validator