ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpid Unicode version

Theorem mpid 42
Description: A nested modus ponens deduction. (Contributed by NM, 14-Dec-2004.)
Hypotheses
Ref Expression
mpid.1  |-  ( ph  ->  ch )
mpid.2  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
mpid  |-  ( ph  ->  ( ps  ->  th )
)

Proof of Theorem mpid
StepHypRef Expression
1 mpid.1 . . 3  |-  ( ph  ->  ch )
21a1d 22 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
3 mpid.2 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
42, 3mpdd 41 1  |-  ( ph  ->  ( ps  ->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  mp2d  47  pm2.43a  51  embantd  56  mpan2d  428  ceqsalt  2803  rspcimdv  2885  fvimacnv  5718  riotass2  5949  pr2ne  7326  0mnnnnn0  9362  caucvgre  11407  climcn1  11734  climcn2  11735  gcdaddm  12420  dvdsgcd  12448  coprmgcdb  12525  nprm  12560  pcqmul  12741  grpid  13486  uniopn  14588  metcnp3  15098  cncfco  15178
  Copyright terms: Public domain W3C validator