ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpid Unicode version

Theorem mpid 42
Description: A nested modus ponens deduction. (Contributed by NM, 14-Dec-2004.)
Hypotheses
Ref Expression
mpid.1  |-  ( ph  ->  ch )
mpid.2  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
mpid  |-  ( ph  ->  ( ps  ->  th )
)

Proof of Theorem mpid
StepHypRef Expression
1 mpid.1 . . 3  |-  ( ph  ->  ch )
21a1d 22 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
3 mpid.2 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
42, 3mpdd 41 1  |-  ( ph  ->  ( ps  ->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  mp2d  47  pm2.43a  51  embantd  56  mpan2d  428  ceqsalt  2778  rspcimdv  2857  fvimacnv  5652  riotass2  5878  pr2ne  7221  0mnnnnn0  9238  caucvgre  11022  climcn1  11348  climcn2  11349  gcdaddm  12017  dvdsgcd  12045  coprmgcdb  12120  nprm  12155  pcqmul  12335  grpid  12983  uniopn  13961  metcnp3  14471  cncfco  14538
  Copyright terms: Public domain W3C validator