ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpid Unicode version

Theorem mpid 42
Description: A nested modus ponens deduction. (Contributed by NM, 14-Dec-2004.)
Hypotheses
Ref Expression
mpid.1  |-  ( ph  ->  ch )
mpid.2  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
mpid  |-  ( ph  ->  ( ps  ->  th )
)

Proof of Theorem mpid
StepHypRef Expression
1 mpid.1 . . 3  |-  ( ph  ->  ch )
21a1d 22 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
3 mpid.2 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
42, 3mpdd 41 1  |-  ( ph  ->  ( ps  ->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  mp2d  47  pm2.43a  51  embantd  56  mpan2d  428  ceqsalt  2797  rspcimdv  2877  fvimacnv  5694  riotass2  5925  pr2ne  7299  0mnnnnn0  9326  caucvgre  11263  climcn1  11590  climcn2  11591  gcdaddm  12276  dvdsgcd  12304  coprmgcdb  12381  nprm  12416  pcqmul  12597  grpid  13342  uniopn  14444  metcnp3  14954  cncfco  15034
  Copyright terms: Public domain W3C validator