| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > findcard2sd | Unicode version | ||
| Description: Deduction form of finite set induction . (Contributed by Jim Kingdon, 14-Sep-2021.) |
| Ref | Expression |
|---|---|
| findcard2sd.ch |
|
| findcard2sd.th |
|
| findcard2sd.ta |
|
| findcard2sd.et |
|
| findcard2sd.z |
|
| findcard2sd.i |
|
| findcard2sd.a |
|
| Ref | Expression |
|---|---|
| findcard2sd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3244 |
. 2
| |
| 2 | findcard2sd.a |
. . . 4
| |
| 3 | 2 | adantr 276 |
. . 3
|
| 4 | sseq1 3247 |
. . . . . 6
| |
| 5 | 4 | anbi2d 464 |
. . . . 5
|
| 6 | findcard2sd.ch |
. . . . 5
| |
| 7 | 5, 6 | imbi12d 234 |
. . . 4
|
| 8 | sseq1 3247 |
. . . . . 6
| |
| 9 | 8 | anbi2d 464 |
. . . . 5
|
| 10 | findcard2sd.th |
. . . . 5
| |
| 11 | 9, 10 | imbi12d 234 |
. . . 4
|
| 12 | sseq1 3247 |
. . . . . 6
| |
| 13 | 12 | anbi2d 464 |
. . . . 5
|
| 14 | findcard2sd.ta |
. . . . 5
| |
| 15 | 13, 14 | imbi12d 234 |
. . . 4
|
| 16 | sseq1 3247 |
. . . . . 6
| |
| 17 | 16 | anbi2d 464 |
. . . . 5
|
| 18 | findcard2sd.et |
. . . . 5
| |
| 19 | 17, 18 | imbi12d 234 |
. . . 4
|
| 20 | findcard2sd.z |
. . . . 5
| |
| 21 | 20 | adantr 276 |
. . . 4
|
| 22 | simprl 529 |
. . . . . . . 8
| |
| 23 | simprr 531 |
. . . . . . . . 9
| |
| 24 | 23 | unssad 3381 |
. . . . . . . 8
|
| 25 | 22, 24 | jca 306 |
. . . . . . 7
|
| 26 | simpll 527 |
. . . . . . . 8
| |
| 27 | id 19 |
. . . . . . . . . . 11
| |
| 28 | vsnid 3698 |
. . . . . . . . . . . 12
| |
| 29 | elun2 3372 |
. . . . . . . . . . . 12
| |
| 30 | 28, 29 | mp1i 10 |
. . . . . . . . . . 11
|
| 31 | 27, 30 | sseldd 3225 |
. . . . . . . . . 10
|
| 32 | 31 | ad2antll 491 |
. . . . . . . . 9
|
| 33 | simplr 528 |
. . . . . . . . 9
| |
| 34 | 32, 33 | eldifd 3207 |
. . . . . . . 8
|
| 35 | findcard2sd.i |
. . . . . . . 8
| |
| 36 | 22, 26, 24, 34, 35 | syl22anc 1272 |
. . . . . . 7
|
| 37 | 25, 36 | embantd 56 |
. . . . . 6
|
| 38 | 37 | ex 115 |
. . . . 5
|
| 39 | 38 | com23 78 |
. . . 4
|
| 40 | 7, 11, 15, 19, 21, 39 | findcard2s 7052 |
. . 3
|
| 41 | 3, 40 | mpcom 36 |
. 2
|
| 42 | 1, 41 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-er 6680 df-en 6888 df-fin 6890 |
| This theorem is referenced by: fimax2gtri 7063 finexdc 7064 unfidisj 7084 undifdc 7086 ssfirab 7098 fnfi 7103 dcfi 7148 difinfinf 7268 hashunlem 11026 hashxp 11048 fsumconst 11965 fsumrelem 11982 fprodcl2lem 12116 fprodconst 12131 fprodap0 12132 fprodrec 12140 fprodap0f 12147 fprodle 12151 fprodmodd 12152 iuncld 14789 fsumcncntop 15241 |
| Copyright terms: Public domain | W3C validator |