ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  findcard2sd Unicode version

Theorem findcard2sd 6588
Description: Deduction form of finite set induction . (Contributed by Jim Kingdon, 14-Sep-2021.)
Hypotheses
Ref Expression
findcard2sd.ch  |-  ( x  =  (/)  ->  ( ps  <->  ch ) )
findcard2sd.th  |-  ( x  =  y  ->  ( ps 
<->  th ) )
findcard2sd.ta  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ps  <->  ta )
)
findcard2sd.et  |-  ( x  =  A  ->  ( ps 
<->  et ) )
findcard2sd.z  |-  ( ph  ->  ch )
findcard2sd.i  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( th  ->  ta ) )
findcard2sd.a  |-  ( ph  ->  A  e.  Fin )
Assertion
Ref Expression
findcard2sd  |-  ( ph  ->  et )
Distinct variable groups:    x, A, y, z    ph, x, y, z    ps, y, z    ch, x    th, x    ta, x    et, x
Allowed substitution hints:    ps( x)    ch( y,
z)    th( y, z)    ta( y, z)    et( y, z)

Proof of Theorem findcard2sd
StepHypRef Expression
1 ssid 3042 . 2  |-  A  C_  A
2 findcard2sd.a . . . 4  |-  ( ph  ->  A  e.  Fin )
32adantr 270 . . 3  |-  ( (
ph  /\  A  C_  A
)  ->  A  e.  Fin )
4 sseq1 3045 . . . . . 6  |-  ( x  =  (/)  ->  ( x 
C_  A  <->  (/)  C_  A
) )
54anbi2d 452 . . . . 5  |-  ( x  =  (/)  ->  ( (
ph  /\  x  C_  A
)  <->  ( ph  /\  (/)  C_  A ) ) )
6 findcard2sd.ch . . . . 5  |-  ( x  =  (/)  ->  ( ps  <->  ch ) )
75, 6imbi12d 232 . . . 4  |-  ( x  =  (/)  ->  ( ( ( ph  /\  x  C_  A )  ->  ps ) 
<->  ( ( ph  /\  (/)  C_  A )  ->  ch ) ) )
8 sseq1 3045 . . . . . 6  |-  ( x  =  y  ->  (
x  C_  A  <->  y  C_  A ) )
98anbi2d 452 . . . . 5  |-  ( x  =  y  ->  (
( ph  /\  x  C_  A )  <->  ( ph  /\  y  C_  A )
) )
10 findcard2sd.th . . . . 5  |-  ( x  =  y  ->  ( ps 
<->  th ) )
119, 10imbi12d 232 . . . 4  |-  ( x  =  y  ->  (
( ( ph  /\  x  C_  A )  ->  ps )  <->  ( ( ph  /\  y  C_  A )  ->  th ) ) )
12 sseq1 3045 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( x  C_  A 
<->  ( y  u.  {
z } )  C_  A ) )
1312anbi2d 452 . . . . 5  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( ph  /\  x  C_  A )  <->  (
ph  /\  ( y  u.  { z } ) 
C_  A ) ) )
14 findcard2sd.ta . . . . 5  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ps  <->  ta )
)
1513, 14imbi12d 232 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( (
ph  /\  x  C_  A
)  ->  ps )  <->  ( ( ph  /\  (
y  u.  { z } )  C_  A
)  ->  ta )
) )
16 sseq1 3045 . . . . . 6  |-  ( x  =  A  ->  (
x  C_  A  <->  A  C_  A
) )
1716anbi2d 452 . . . . 5  |-  ( x  =  A  ->  (
( ph  /\  x  C_  A )  <->  ( ph  /\  A  C_  A )
) )
18 findcard2sd.et . . . . 5  |-  ( x  =  A  ->  ( ps 
<->  et ) )
1917, 18imbi12d 232 . . . 4  |-  ( x  =  A  ->  (
( ( ph  /\  x  C_  A )  ->  ps )  <->  ( ( ph  /\  A  C_  A )  ->  et ) ) )
20 findcard2sd.z . . . . 5  |-  ( ph  ->  ch )
2120adantr 270 . . . 4  |-  ( (
ph  /\  (/)  C_  A
)  ->  ch )
22 simprl 498 . . . . . . . 8  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( ph  /\  ( y  u.  {
z } )  C_  A ) )  ->  ph )
23 simprr 499 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( ph  /\  ( y  u.  {
z } )  C_  A ) )  -> 
( y  u.  {
z } )  C_  A )
2423unssad 3175 . . . . . . . 8  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( ph  /\  ( y  u.  {
z } )  C_  A ) )  -> 
y  C_  A )
2522, 24jca 300 . . . . . . 7  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( ph  /\  ( y  u.  {
z } )  C_  A ) )  -> 
( ph  /\  y  C_  A ) )
26 simpll 496 . . . . . . . 8  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( ph  /\  ( y  u.  {
z } )  C_  A ) )  -> 
y  e.  Fin )
27 id 19 . . . . . . . . . . 11  |-  ( ( y  u.  { z } )  C_  A  ->  ( y  u.  {
z } )  C_  A )
28 vsnid 3471 . . . . . . . . . . . 12  |-  z  e. 
{ z }
29 elun2 3166 . . . . . . . . . . . 12  |-  ( z  e.  { z }  ->  z  e.  ( y  u.  { z } ) )
3028, 29mp1i 10 . . . . . . . . . . 11  |-  ( ( y  u.  { z } )  C_  A  ->  z  e.  ( y  u.  { z } ) )
3127, 30sseldd 3024 . . . . . . . . . 10  |-  ( ( y  u.  { z } )  C_  A  ->  z  e.  A )
3231ad2antll 475 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( ph  /\  ( y  u.  {
z } )  C_  A ) )  -> 
z  e.  A )
33 simplr 497 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( ph  /\  ( y  u.  {
z } )  C_  A ) )  ->  -.  z  e.  y
)
3432, 33eldifd 3007 . . . . . . . 8  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( ph  /\  ( y  u.  {
z } )  C_  A ) )  -> 
z  e.  ( A 
\  y ) )
35 findcard2sd.i . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( th  ->  ta ) )
3622, 26, 24, 34, 35syl22anc 1175 . . . . . . 7  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( ph  /\  ( y  u.  {
z } )  C_  A ) )  -> 
( th  ->  ta ) )
3725, 36embantd 55 . . . . . 6  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( ph  /\  ( y  u.  {
z } )  C_  A ) )  -> 
( ( ( ph  /\  y  C_  A )  ->  th )  ->  ta ) )
3837ex 113 . . . . 5  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( ph  /\  ( y  u. 
{ z } ) 
C_  A )  -> 
( ( ( ph  /\  y  C_  A )  ->  th )  ->  ta ) ) )
3938com23 77 . . . 4  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( (
( ph  /\  y  C_  A )  ->  th )  ->  ( ( ph  /\  ( y  u.  {
z } )  C_  A )  ->  ta ) ) )
407, 11, 15, 19, 21, 39findcard2s 6586 . . 3  |-  ( A  e.  Fin  ->  (
( ph  /\  A  C_  A )  ->  et ) )
413, 40mpcom 36 . 2  |-  ( (
ph  /\  A  C_  A
)  ->  et )
421, 41mpan2 416 1  |-  ( ph  ->  et )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289    e. wcel 1438    \ cdif 2994    u. cun 2995    C_ wss 2997   (/)c0 3284   {csn 3441   Fincfn 6437
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-iord 4184  df-on 4186  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-er 6272  df-en 6438  df-fin 6440
This theorem is referenced by:  fimax2gtri  6597  finexdc  6598  unfidisj  6612  undifdc  6614  ssfirab  6622  fnfi  6625  hashunlem  10177  hashxp  10199  fsumconst  10811  fsumrelem  10828
  Copyright terms: Public domain W3C validator