Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > findcard2sd | Unicode version |
Description: Deduction form of finite set induction . (Contributed by Jim Kingdon, 14-Sep-2021.) |
Ref | Expression |
---|---|
findcard2sd.ch | |
findcard2sd.th | |
findcard2sd.ta | |
findcard2sd.et | |
findcard2sd.z | |
findcard2sd.i | |
findcard2sd.a |
Ref | Expression |
---|---|
findcard2sd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3167 | . 2 | |
2 | findcard2sd.a | . . . 4 | |
3 | 2 | adantr 274 | . . 3 |
4 | sseq1 3170 | . . . . . 6 | |
5 | 4 | anbi2d 461 | . . . . 5 |
6 | findcard2sd.ch | . . . . 5 | |
7 | 5, 6 | imbi12d 233 | . . . 4 |
8 | sseq1 3170 | . . . . . 6 | |
9 | 8 | anbi2d 461 | . . . . 5 |
10 | findcard2sd.th | . . . . 5 | |
11 | 9, 10 | imbi12d 233 | . . . 4 |
12 | sseq1 3170 | . . . . . 6 | |
13 | 12 | anbi2d 461 | . . . . 5 |
14 | findcard2sd.ta | . . . . 5 | |
15 | 13, 14 | imbi12d 233 | . . . 4 |
16 | sseq1 3170 | . . . . . 6 | |
17 | 16 | anbi2d 461 | . . . . 5 |
18 | findcard2sd.et | . . . . 5 | |
19 | 17, 18 | imbi12d 233 | . . . 4 |
20 | findcard2sd.z | . . . . 5 | |
21 | 20 | adantr 274 | . . . 4 |
22 | simprl 526 | . . . . . . . 8 | |
23 | simprr 527 | . . . . . . . . 9 | |
24 | 23 | unssad 3304 | . . . . . . . 8 |
25 | 22, 24 | jca 304 | . . . . . . 7 |
26 | simpll 524 | . . . . . . . 8 | |
27 | id 19 | . . . . . . . . . . 11 | |
28 | vsnid 3613 | . . . . . . . . . . . 12 | |
29 | elun2 3295 | . . . . . . . . . . . 12 | |
30 | 28, 29 | mp1i 10 | . . . . . . . . . . 11 |
31 | 27, 30 | sseldd 3148 | . . . . . . . . . 10 |
32 | 31 | ad2antll 488 | . . . . . . . . 9 |
33 | simplr 525 | . . . . . . . . 9 | |
34 | 32, 33 | eldifd 3131 | . . . . . . . 8 |
35 | findcard2sd.i | . . . . . . . 8 | |
36 | 22, 26, 24, 34, 35 | syl22anc 1234 | . . . . . . 7 |
37 | 25, 36 | embantd 56 | . . . . . 6 |
38 | 37 | ex 114 | . . . . 5 |
39 | 38 | com23 78 | . . . 4 |
40 | 7, 11, 15, 19, 21, 39 | findcard2s 6864 | . . 3 |
41 | 3, 40 | mpcom 36 | . 2 |
42 | 1, 41 | mpan2 423 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cdif 3118 cun 3119 wss 3121 c0 3414 csn 3581 cfn 6714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-er 6509 df-en 6715 df-fin 6717 |
This theorem is referenced by: fimax2gtri 6875 finexdc 6876 unfidisj 6895 undifdc 6897 ssfirab 6907 fnfi 6910 dcfi 6954 difinfinf 7074 hashunlem 10726 hashxp 10748 fsumconst 11404 fsumrelem 11421 fprodcl2lem 11555 fprodconst 11570 fprodap0 11571 fprodrec 11579 fprodap0f 11586 fprodle 11590 fprodmodd 11591 iuncld 12830 fsumcncntop 13271 |
Copyright terms: Public domain | W3C validator |