| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > findcard2sd | Unicode version | ||
| Description: Deduction form of finite set induction . (Contributed by Jim Kingdon, 14-Sep-2021.) |
| Ref | Expression |
|---|---|
| findcard2sd.ch |
|
| findcard2sd.th |
|
| findcard2sd.ta |
|
| findcard2sd.et |
|
| findcard2sd.z |
|
| findcard2sd.i |
|
| findcard2sd.a |
|
| Ref | Expression |
|---|---|
| findcard2sd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3221 |
. 2
| |
| 2 | findcard2sd.a |
. . . 4
| |
| 3 | 2 | adantr 276 |
. . 3
|
| 4 | sseq1 3224 |
. . . . . 6
| |
| 5 | 4 | anbi2d 464 |
. . . . 5
|
| 6 | findcard2sd.ch |
. . . . 5
| |
| 7 | 5, 6 | imbi12d 234 |
. . . 4
|
| 8 | sseq1 3224 |
. . . . . 6
| |
| 9 | 8 | anbi2d 464 |
. . . . 5
|
| 10 | findcard2sd.th |
. . . . 5
| |
| 11 | 9, 10 | imbi12d 234 |
. . . 4
|
| 12 | sseq1 3224 |
. . . . . 6
| |
| 13 | 12 | anbi2d 464 |
. . . . 5
|
| 14 | findcard2sd.ta |
. . . . 5
| |
| 15 | 13, 14 | imbi12d 234 |
. . . 4
|
| 16 | sseq1 3224 |
. . . . . 6
| |
| 17 | 16 | anbi2d 464 |
. . . . 5
|
| 18 | findcard2sd.et |
. . . . 5
| |
| 19 | 17, 18 | imbi12d 234 |
. . . 4
|
| 20 | findcard2sd.z |
. . . . 5
| |
| 21 | 20 | adantr 276 |
. . . 4
|
| 22 | simprl 529 |
. . . . . . . 8
| |
| 23 | simprr 531 |
. . . . . . . . 9
| |
| 24 | 23 | unssad 3358 |
. . . . . . . 8
|
| 25 | 22, 24 | jca 306 |
. . . . . . 7
|
| 26 | simpll 527 |
. . . . . . . 8
| |
| 27 | id 19 |
. . . . . . . . . . 11
| |
| 28 | vsnid 3675 |
. . . . . . . . . . . 12
| |
| 29 | elun2 3349 |
. . . . . . . . . . . 12
| |
| 30 | 28, 29 | mp1i 10 |
. . . . . . . . . . 11
|
| 31 | 27, 30 | sseldd 3202 |
. . . . . . . . . 10
|
| 32 | 31 | ad2antll 491 |
. . . . . . . . 9
|
| 33 | simplr 528 |
. . . . . . . . 9
| |
| 34 | 32, 33 | eldifd 3184 |
. . . . . . . 8
|
| 35 | findcard2sd.i |
. . . . . . . 8
| |
| 36 | 22, 26, 24, 34, 35 | syl22anc 1251 |
. . . . . . 7
|
| 37 | 25, 36 | embantd 56 |
. . . . . 6
|
| 38 | 37 | ex 115 |
. . . . 5
|
| 39 | 38 | com23 78 |
. . . 4
|
| 40 | 7, 11, 15, 19, 21, 39 | findcard2s 7013 |
. . 3
|
| 41 | 3, 40 | mpcom 36 |
. 2
|
| 42 | 1, 41 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-er 6643 df-en 6851 df-fin 6853 |
| This theorem is referenced by: fimax2gtri 7024 finexdc 7025 unfidisj 7045 undifdc 7047 ssfirab 7059 fnfi 7064 dcfi 7109 difinfinf 7229 hashunlem 10986 hashxp 11008 fsumconst 11880 fsumrelem 11897 fprodcl2lem 12031 fprodconst 12046 fprodap0 12047 fprodrec 12055 fprodap0f 12062 fprodle 12066 fprodmodd 12067 iuncld 14702 fsumcncntop 15154 |
| Copyright terms: Public domain | W3C validator |