| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > findcard2sd | Unicode version | ||
| Description: Deduction form of finite set induction . (Contributed by Jim Kingdon, 14-Sep-2021.) |
| Ref | Expression |
|---|---|
| findcard2sd.ch |
|
| findcard2sd.th |
|
| findcard2sd.ta |
|
| findcard2sd.et |
|
| findcard2sd.z |
|
| findcard2sd.i |
|
| findcard2sd.a |
|
| Ref | Expression |
|---|---|
| findcard2sd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3213 |
. 2
| |
| 2 | findcard2sd.a |
. . . 4
| |
| 3 | 2 | adantr 276 |
. . 3
|
| 4 | sseq1 3216 |
. . . . . 6
| |
| 5 | 4 | anbi2d 464 |
. . . . 5
|
| 6 | findcard2sd.ch |
. . . . 5
| |
| 7 | 5, 6 | imbi12d 234 |
. . . 4
|
| 8 | sseq1 3216 |
. . . . . 6
| |
| 9 | 8 | anbi2d 464 |
. . . . 5
|
| 10 | findcard2sd.th |
. . . . 5
| |
| 11 | 9, 10 | imbi12d 234 |
. . . 4
|
| 12 | sseq1 3216 |
. . . . . 6
| |
| 13 | 12 | anbi2d 464 |
. . . . 5
|
| 14 | findcard2sd.ta |
. . . . 5
| |
| 15 | 13, 14 | imbi12d 234 |
. . . 4
|
| 16 | sseq1 3216 |
. . . . . 6
| |
| 17 | 16 | anbi2d 464 |
. . . . 5
|
| 18 | findcard2sd.et |
. . . . 5
| |
| 19 | 17, 18 | imbi12d 234 |
. . . 4
|
| 20 | findcard2sd.z |
. . . . 5
| |
| 21 | 20 | adantr 276 |
. . . 4
|
| 22 | simprl 529 |
. . . . . . . 8
| |
| 23 | simprr 531 |
. . . . . . . . 9
| |
| 24 | 23 | unssad 3350 |
. . . . . . . 8
|
| 25 | 22, 24 | jca 306 |
. . . . . . 7
|
| 26 | simpll 527 |
. . . . . . . 8
| |
| 27 | id 19 |
. . . . . . . . . . 11
| |
| 28 | vsnid 3665 |
. . . . . . . . . . . 12
| |
| 29 | elun2 3341 |
. . . . . . . . . . . 12
| |
| 30 | 28, 29 | mp1i 10 |
. . . . . . . . . . 11
|
| 31 | 27, 30 | sseldd 3194 |
. . . . . . . . . 10
|
| 32 | 31 | ad2antll 491 |
. . . . . . . . 9
|
| 33 | simplr 528 |
. . . . . . . . 9
| |
| 34 | 32, 33 | eldifd 3176 |
. . . . . . . 8
|
| 35 | findcard2sd.i |
. . . . . . . 8
| |
| 36 | 22, 26, 24, 34, 35 | syl22anc 1251 |
. . . . . . 7
|
| 37 | 25, 36 | embantd 56 |
. . . . . 6
|
| 38 | 37 | ex 115 |
. . . . 5
|
| 39 | 38 | com23 78 |
. . . 4
|
| 40 | 7, 11, 15, 19, 21, 39 | findcard2s 6987 |
. . 3
|
| 41 | 3, 40 | mpcom 36 |
. 2
|
| 42 | 1, 41 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-er 6620 df-en 6828 df-fin 6830 |
| This theorem is referenced by: fimax2gtri 6998 finexdc 6999 unfidisj 7019 undifdc 7021 ssfirab 7033 fnfi 7038 dcfi 7083 difinfinf 7203 hashunlem 10949 hashxp 10971 fsumconst 11765 fsumrelem 11782 fprodcl2lem 11916 fprodconst 11931 fprodap0 11932 fprodrec 11940 fprodap0f 11947 fprodle 11951 fprodmodd 11952 iuncld 14587 fsumcncntop 15039 |
| Copyright terms: Public domain | W3C validator |