Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > findcard2sd | Unicode version |
Description: Deduction form of finite set induction . (Contributed by Jim Kingdon, 14-Sep-2021.) |
Ref | Expression |
---|---|
findcard2sd.ch | |
findcard2sd.th | |
findcard2sd.ta | |
findcard2sd.et | |
findcard2sd.z | |
findcard2sd.i | |
findcard2sd.a |
Ref | Expression |
---|---|
findcard2sd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3167 | . 2 | |
2 | findcard2sd.a | . . . 4 | |
3 | 2 | adantr 274 | . . 3 |
4 | sseq1 3170 | . . . . . 6 | |
5 | 4 | anbi2d 461 | . . . . 5 |
6 | findcard2sd.ch | . . . . 5 | |
7 | 5, 6 | imbi12d 233 | . . . 4 |
8 | sseq1 3170 | . . . . . 6 | |
9 | 8 | anbi2d 461 | . . . . 5 |
10 | findcard2sd.th | . . . . 5 | |
11 | 9, 10 | imbi12d 233 | . . . 4 |
12 | sseq1 3170 | . . . . . 6 | |
13 | 12 | anbi2d 461 | . . . . 5 |
14 | findcard2sd.ta | . . . . 5 | |
15 | 13, 14 | imbi12d 233 | . . . 4 |
16 | sseq1 3170 | . . . . . 6 | |
17 | 16 | anbi2d 461 | . . . . 5 |
18 | findcard2sd.et | . . . . 5 | |
19 | 17, 18 | imbi12d 233 | . . . 4 |
20 | findcard2sd.z | . . . . 5 | |
21 | 20 | adantr 274 | . . . 4 |
22 | simprl 526 | . . . . . . . 8 | |
23 | simprr 527 | . . . . . . . . 9 | |
24 | 23 | unssad 3304 | . . . . . . . 8 |
25 | 22, 24 | jca 304 | . . . . . . 7 |
26 | simpll 524 | . . . . . . . 8 | |
27 | id 19 | . . . . . . . . . . 11 | |
28 | vsnid 3615 | . . . . . . . . . . . 12 | |
29 | elun2 3295 | . . . . . . . . . . . 12 | |
30 | 28, 29 | mp1i 10 | . . . . . . . . . . 11 |
31 | 27, 30 | sseldd 3148 | . . . . . . . . . 10 |
32 | 31 | ad2antll 488 | . . . . . . . . 9 |
33 | simplr 525 | . . . . . . . . 9 | |
34 | 32, 33 | eldifd 3131 | . . . . . . . 8 |
35 | findcard2sd.i | . . . . . . . 8 | |
36 | 22, 26, 24, 34, 35 | syl22anc 1234 | . . . . . . 7 |
37 | 25, 36 | embantd 56 | . . . . . 6 |
38 | 37 | ex 114 | . . . . 5 |
39 | 38 | com23 78 | . . . 4 |
40 | 7, 11, 15, 19, 21, 39 | findcard2s 6868 | . . 3 |
41 | 3, 40 | mpcom 36 | . 2 |
42 | 1, 41 | mpan2 423 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cdif 3118 cun 3119 wss 3121 c0 3414 csn 3583 cfn 6718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-er 6513 df-en 6719 df-fin 6721 |
This theorem is referenced by: fimax2gtri 6879 finexdc 6880 unfidisj 6899 undifdc 6901 ssfirab 6911 fnfi 6914 dcfi 6958 difinfinf 7078 hashunlem 10739 hashxp 10761 fsumconst 11417 fsumrelem 11434 fprodcl2lem 11568 fprodconst 11583 fprodap0 11584 fprodrec 11592 fprodap0f 11599 fprodle 11603 fprodmodd 11604 iuncld 12909 fsumcncntop 13350 |
Copyright terms: Public domain | W3C validator |