| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > findcard2sd | Unicode version | ||
| Description: Deduction form of finite set induction . (Contributed by Jim Kingdon, 14-Sep-2021.) |
| Ref | Expression |
|---|---|
| findcard2sd.ch |
|
| findcard2sd.th |
|
| findcard2sd.ta |
|
| findcard2sd.et |
|
| findcard2sd.z |
|
| findcard2sd.i |
|
| findcard2sd.a |
|
| Ref | Expression |
|---|---|
| findcard2sd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3204 |
. 2
| |
| 2 | findcard2sd.a |
. . . 4
| |
| 3 | 2 | adantr 276 |
. . 3
|
| 4 | sseq1 3207 |
. . . . . 6
| |
| 5 | 4 | anbi2d 464 |
. . . . 5
|
| 6 | findcard2sd.ch |
. . . . 5
| |
| 7 | 5, 6 | imbi12d 234 |
. . . 4
|
| 8 | sseq1 3207 |
. . . . . 6
| |
| 9 | 8 | anbi2d 464 |
. . . . 5
|
| 10 | findcard2sd.th |
. . . . 5
| |
| 11 | 9, 10 | imbi12d 234 |
. . . 4
|
| 12 | sseq1 3207 |
. . . . . 6
| |
| 13 | 12 | anbi2d 464 |
. . . . 5
|
| 14 | findcard2sd.ta |
. . . . 5
| |
| 15 | 13, 14 | imbi12d 234 |
. . . 4
|
| 16 | sseq1 3207 |
. . . . . 6
| |
| 17 | 16 | anbi2d 464 |
. . . . 5
|
| 18 | findcard2sd.et |
. . . . 5
| |
| 19 | 17, 18 | imbi12d 234 |
. . . 4
|
| 20 | findcard2sd.z |
. . . . 5
| |
| 21 | 20 | adantr 276 |
. . . 4
|
| 22 | simprl 529 |
. . . . . . . 8
| |
| 23 | simprr 531 |
. . . . . . . . 9
| |
| 24 | 23 | unssad 3341 |
. . . . . . . 8
|
| 25 | 22, 24 | jca 306 |
. . . . . . 7
|
| 26 | simpll 527 |
. . . . . . . 8
| |
| 27 | id 19 |
. . . . . . . . . . 11
| |
| 28 | vsnid 3655 |
. . . . . . . . . . . 12
| |
| 29 | elun2 3332 |
. . . . . . . . . . . 12
| |
| 30 | 28, 29 | mp1i 10 |
. . . . . . . . . . 11
|
| 31 | 27, 30 | sseldd 3185 |
. . . . . . . . . 10
|
| 32 | 31 | ad2antll 491 |
. . . . . . . . 9
|
| 33 | simplr 528 |
. . . . . . . . 9
| |
| 34 | 32, 33 | eldifd 3167 |
. . . . . . . 8
|
| 35 | findcard2sd.i |
. . . . . . . 8
| |
| 36 | 22, 26, 24, 34, 35 | syl22anc 1250 |
. . . . . . 7
|
| 37 | 25, 36 | embantd 56 |
. . . . . 6
|
| 38 | 37 | ex 115 |
. . . . 5
|
| 39 | 38 | com23 78 |
. . . 4
|
| 40 | 7, 11, 15, 19, 21, 39 | findcard2s 6960 |
. . 3
|
| 41 | 3, 40 | mpcom 36 |
. 2
|
| 42 | 1, 41 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-er 6601 df-en 6809 df-fin 6811 |
| This theorem is referenced by: fimax2gtri 6971 finexdc 6972 unfidisj 6992 undifdc 6994 ssfirab 7006 fnfi 7011 dcfi 7056 difinfinf 7176 hashunlem 10913 hashxp 10935 fsumconst 11636 fsumrelem 11653 fprodcl2lem 11787 fprodconst 11802 fprodap0 11803 fprodrec 11811 fprodap0f 11818 fprodle 11822 fprodmodd 11823 iuncld 14435 fsumcncntop 14887 |
| Copyright terms: Public domain | W3C validator |