ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3syld Unicode version

Theorem 3syld 57
Description: Triple syllogism deduction. (Contributed by Jeff Hankins, 4-Aug-2009.)
Hypotheses
Ref Expression
3syld.1  |-  ( ph  ->  ( ps  ->  ch ) )
3syld.2  |-  ( ph  ->  ( ch  ->  th )
)
3syld.3  |-  ( ph  ->  ( th  ->  ta ) )
Assertion
Ref Expression
3syld  |-  ( ph  ->  ( ps  ->  ta ) )

Proof of Theorem 3syld
StepHypRef Expression
1 3syld.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
2 3syld.2 . . 3  |-  ( ph  ->  ( ch  ->  th )
)
31, 2syld 45 . 2  |-  ( ph  ->  ( ps  ->  th )
)
4 3syld.3 . 2  |-  ( ph  ->  ( th  ->  ta ) )
53, 4syld 45 1  |-  ( ph  ->  ( ps  ->  ta ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  xpfi  6895  fodjumkvlemres  7123  enmkvlem  7125  apreap  8485  msqge0  8514  cju  8856  facavg  10659  mulcn2  11253  coprm  12076  rpexp  12085  cnpnei  12859  ismkvnnlem  13931
  Copyright terms: Public domain W3C validator