ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pockthg Unicode version

Theorem pockthg 12287
Description: The generalized Pocklington's theorem. If  N  -  1  =  A  x.  B where  B  <  A, then  N is prime if and only if for every prime factor  p of  A, there is an  x such that  x ^ ( N  -  1 )  =  1 (  mod 
N ) and  gcd  ( x ^ ( ( N  -  1 )  /  p )  -  1 ,  N )  =  1. (Contributed by Mario Carneiro, 2-Mar-2014.)
Hypotheses
Ref Expression
pockthg.1  |-  ( ph  ->  A  e.  NN )
pockthg.2  |-  ( ph  ->  B  e.  NN )
pockthg.3  |-  ( ph  ->  B  <  A )
pockthg.4  |-  ( ph  ->  N  =  ( ( A  x.  B )  +  1 ) )
pockthg.5  |-  ( ph  ->  A. p  e.  Prime  ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )
Assertion
Ref Expression
pockthg  |-  ( ph  ->  N  e.  Prime )
Distinct variable groups:    x, p, N    A, p, x    ph, p, x
Allowed substitution hints:    B( x, p)

Proof of Theorem pockthg
Dummy variable  q is distinct from all other variables.
StepHypRef Expression
1 pockthg.4 . . 3  |-  ( ph  ->  N  =  ( ( A  x.  B )  +  1 ) )
2 pockthg.1 . . . . . . 7  |-  ( ph  ->  A  e.  NN )
3 pockthg.2 . . . . . . 7  |-  ( ph  ->  B  e.  NN )
42, 3nnmulcld 8906 . . . . . 6  |-  ( ph  ->  ( A  x.  B
)  e.  NN )
5 nnuz 9501 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
64, 5eleqtrdi 2259 . . . . 5  |-  ( ph  ->  ( A  x.  B
)  e.  ( ZZ>= ` 
1 ) )
7 eluzp1p1 9491 . . . . 5  |-  ( ( A  x.  B )  e.  ( ZZ>= `  1
)  ->  ( ( A  x.  B )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
86, 7syl 14 . . . 4  |-  ( ph  ->  ( ( A  x.  B )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
9 df-2 8916 . . . . 5  |-  2  =  ( 1  +  1 )
109fveq2i 5489 . . . 4  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
118, 10eleqtrrdi 2260 . . 3  |-  ( ph  ->  ( ( A  x.  B )  +  1 )  e.  ( ZZ>= ` 
2 ) )
121, 11eqeltrd 2243 . 2  |-  ( ph  ->  N  e.  ( ZZ>= ` 
2 ) )
13 eluzelre 9476 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  RR )
1412, 13syl 14 . . . . . . . 8  |-  ( ph  ->  N  e.  RR )
1514adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  N  e.  RR )
162nnred 8870 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
1716resqcld 10614 . . . . . . . 8  |-  ( ph  ->  ( A ^ 2 )  e.  RR )
1817adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A ^ 2 )  e.  RR )
19 prmnn 12042 . . . . . . . . . 10  |-  ( q  e.  Prime  ->  q  e.  NN )
2019ad2antrl 482 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
q  e.  NN )
2120nnred 8870 . . . . . . . 8  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
q  e.  RR )
2221resqcld 10614 . . . . . . 7  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( q ^ 2 )  e.  RR )
23 pockthg.3 . . . . . . . . . . 11  |-  ( ph  ->  B  <  A )
243nnred 8870 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  RR )
252nngt0d 8901 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  A )
26 ltmul2 8751 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( B  <  A  <->  ( A  x.  B )  <  ( A  x.  A ) ) )
2724, 16, 16, 25, 26syl112anc 1232 . . . . . . . . . . 11  |-  ( ph  ->  ( B  <  A  <->  ( A  x.  B )  <  ( A  x.  A ) ) )
2823, 27mpbid 146 . . . . . . . . . 10  |-  ( ph  ->  ( A  x.  B
)  <  ( A  x.  A ) )
292, 2nnmulcld 8906 . . . . . . . . . . 11  |-  ( ph  ->  ( A  x.  A
)  e.  NN )
30 nnltp1le 9251 . . . . . . . . . . 11  |-  ( ( ( A  x.  B
)  e.  NN  /\  ( A  x.  A
)  e.  NN )  ->  ( ( A  x.  B )  < 
( A  x.  A
)  <->  ( ( A  x.  B )  +  1 )  <_  ( A  x.  A )
) )
314, 29, 30syl2anc 409 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  x.  B )  <  ( A  x.  A )  <->  ( ( A  x.  B
)  +  1 )  <_  ( A  x.  A ) ) )
3228, 31mpbid 146 . . . . . . . . 9  |-  ( ph  ->  ( ( A  x.  B )  +  1 )  <_  ( A  x.  A ) )
332nncnd 8871 . . . . . . . . . 10  |-  ( ph  ->  A  e.  CC )
3433sqvald 10585 . . . . . . . . 9  |-  ( ph  ->  ( A ^ 2 )  =  ( A  x.  A ) )
3532, 1, 343brtr4d 4014 . . . . . . . 8  |-  ( ph  ->  N  <_  ( A ^ 2 ) )
3635adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  N  <_  ( A ^
2 ) )
37 pockthg.5 . . . . . . . . . . . . 13  |-  ( ph  ->  A. p  e.  Prime  ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )
3837adantr 274 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A. p  e.  Prime  ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )
39 prmnn 12042 . . . . . . . . . . . . . . . . . . . 20  |-  ( p  e.  Prime  ->  p  e.  NN )
4039ad2antrl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  p  e.  NN )
4140nncnd 8871 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  p  e.  CC )
4241exp1d 10583 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  ( p ^ 1 )  =  p )
43 nnge1 8880 . . . . . . . . . . . . . . . . . . 19  |-  ( ( p  pCnt  A )  e.  NN  ->  1  <_  ( p  pCnt  A )
)
4443ad2antll 483 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  1  <_  ( p  pCnt  A )
)
45 simprl 521 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  p  e.  Prime )
462nnzd 9312 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  A  e.  ZZ )
4746ad2antrr 480 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  A  e.  ZZ )
48 1nn0 9130 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  NN0
4948a1i 9 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  1  e.  NN0 )
50 pcdvdsb 12251 . . . . . . . . . . . . . . . . . . 19  |-  ( ( p  e.  Prime  /\  A  e.  ZZ  /\  1  e. 
NN0 )  ->  (
1  <_  ( p  pCnt  A )  <->  ( p ^ 1 )  ||  A ) )
5145, 47, 49, 50syl3anc 1228 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  ( 1  <_  ( p  pCnt  A )  <->  ( p ^
1 )  ||  A
) )
5244, 51mpbid 146 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  ( p ^ 1 )  ||  A )
5342, 52eqbrtrrd 4006 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  p  ||  A
)
54 simpl1 990 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  ph )
5554, 2syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  A  e.  NN )
5654, 3syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  B  e.  NN )
5754, 23syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  B  <  A )
5854, 1syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  N  =  ( ( A  x.  B )  +  1 ) )
59 simpl2l 1040 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  -> 
q  e.  Prime )
60 simpl2r 1041 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  -> 
q  ||  N )
61 simpl3l 1042 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  p  e.  Prime )
62 simpl3r 1043 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  -> 
( p  pCnt  A
)  e.  NN )
63 simprl 521 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  x  e.  ZZ )
64 simprrl 529 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  -> 
( ( x ^
( N  -  1 ) )  mod  N
)  =  1 )
65 simprrr 530 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  -> 
( ( ( x ^ ( ( N  -  1 )  /  p ) )  - 
1 )  gcd  N
)  =  1 )
6655, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65pockthlem 12286 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  -> 
( p  pCnt  A
)  <_  ( p  pCnt  ( q  -  1 ) ) )
6766rexlimdvaa 2584 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  -> 
( E. x  e.  ZZ  ( ( ( x ^ ( N  -  1 ) )  mod  N )  =  1  /\  ( ( ( x ^ (
( N  -  1 )  /  p ) )  -  1 )  gcd  N )  =  1 )  ->  (
p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) ) )
68673expa 1193 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  ( E. x  e.  ZZ  (
( ( x ^
( N  -  1 ) )  mod  N
)  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  - 
1 )  gcd  N
)  =  1 )  ->  ( p  pCnt  A )  <_  ( p  pCnt  ( q  -  1 ) ) ) )
6953, 68embantd 56 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  ( (
p  ||  A  ->  E. x  e.  ZZ  (
( ( x ^
( N  -  1 ) )  mod  N
)  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  - 
1 )  gcd  N
)  =  1 ) )  ->  ( p  pCnt  A )  <_  (
p  pCnt  ( q  -  1 ) ) ) )
7069expr 373 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( ( p  pCnt  A )  e.  NN  ->  ( ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) )  ->  (
p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) ) ) )
71 id 19 . . . . . . . . . . . . . . . . . 18  |-  ( p  e.  Prime  ->  p  e. 
Prime )
72 prmuz2 12063 . . . . . . . . . . . . . . . . . . . 20  |-  ( q  e.  Prime  ->  q  e.  ( ZZ>= `  2 )
)
73 uz2m1nn 9543 . . . . . . . . . . . . . . . . . . . 20  |-  ( q  e.  ( ZZ>= `  2
)  ->  ( q  -  1 )  e.  NN )
7472, 73syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( q  e.  Prime  ->  ( q  -  1 )  e.  NN )
7574ad2antrl 482 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( q  -  1 )  e.  NN )
76 pccl 12231 . . . . . . . . . . . . . . . . . 18  |-  ( ( p  e.  Prime  /\  (
q  -  1 )  e.  NN )  -> 
( p  pCnt  (
q  -  1 ) )  e.  NN0 )
7771, 75, 76syl2anr 288 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( p  pCnt  (
q  -  1 ) )  e.  NN0 )
7877nn0ge0d 9170 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
0  <_  ( p  pCnt  ( q  -  1 ) ) )
79 breq1 3985 . . . . . . . . . . . . . . . 16  |-  ( ( p  pCnt  A )  =  0  ->  (
( p  pCnt  A
)  <_  ( p  pCnt  ( q  -  1 ) )  <->  0  <_  ( p  pCnt  ( q  -  1 ) ) ) )
8078, 79syl5ibrcom 156 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( ( p  pCnt  A )  =  0  -> 
( p  pCnt  A
)  <_  ( p  pCnt  ( q  -  1 ) ) ) )
8180a1dd 48 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( ( p  pCnt  A )  =  0  -> 
( ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) )  ->  (
p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) ) ) )
82 simpr 109 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  ->  p  e.  Prime )
832ad2antrr 480 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  ->  A  e.  NN )
8482, 83pccld 12232 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( p  pCnt  A
)  e.  NN0 )
85 elnn0 9116 . . . . . . . . . . . . . . 15  |-  ( ( p  pCnt  A )  e.  NN0  <->  ( ( p 
pCnt  A )  e.  NN  \/  ( p  pCnt  A
)  =  0 ) )
8684, 85sylib 121 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( ( p  pCnt  A )  e.  NN  \/  ( p  pCnt  A )  =  0 ) )
8770, 81, 86mpjaod 708 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) )  ->  (
p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) ) )
8887ralimdva 2533 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A. p  e. 
Prime  ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) )  ->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  ( q  -  1 ) ) ) )
8938, 88mpd 13 . . . . . . . . . . 11  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) )
9075nnzd 9312 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( q  -  1 )  e.  ZZ )
91 pc2dvds 12261 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( q  -  1 )  e.  ZZ )  ->  ( A  ||  ( q  -  1 )  <->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) ) )
9246, 90, 91syl2an2r 585 . . . . . . . . . . 11  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A  ||  (
q  -  1 )  <->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) ) )
9389, 92mpbird 166 . . . . . . . . . 10  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A  ||  ( q  - 
1 ) )
94 dvdsle 11782 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( q  -  1 )  e.  NN )  ->  ( A  ||  ( q  -  1 )  ->  A  <_  ( q  -  1 ) ) )
9546, 75, 94syl2an2r 585 . . . . . . . . . 10  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A  ||  (
q  -  1 )  ->  A  <_  (
q  -  1 ) ) )
9693, 95mpd 13 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A  <_  ( q  - 
1 ) )
972nnnn0d 9167 . . . . . . . . . 10  |-  ( ph  ->  A  e.  NN0 )
9820nnnn0d 9167 . . . . . . . . . 10  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
q  e.  NN0 )
99 nn0ltlem1 9255 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  q  e.  NN0 )  -> 
( A  <  q  <->  A  <_  ( q  - 
1 ) ) )
10097, 98, 99syl2an2r 585 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A  <  q  <->  A  <_  ( q  - 
1 ) ) )
10196, 100mpbird 166 . . . . . . . 8  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A  <  q )
10216adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A  e.  RR )
10397nn0ge0d 9170 . . . . . . . . . 10  |-  ( ph  ->  0  <_  A )
104103adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
0  <_  A )
10598nn0ge0d 9170 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
0  <_  q )
106102, 21, 104, 105lt2sqd 10619 . . . . . . . 8  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A  <  q  <->  ( A ^ 2 )  <  ( q ^
2 ) ) )
107101, 106mpbid 146 . . . . . . 7  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A ^ 2 )  <  ( q ^ 2 ) )
10815, 18, 22, 36, 107lelttrd 8023 . . . . . 6  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  N  <  ( q ^
2 ) )
109 dvdszrcl 11732 . . . . . . . . 9  |-  ( q 
||  N  ->  (
q  e.  ZZ  /\  N  e.  ZZ )
)
110109simprd 113 . . . . . . . 8  |-  ( q 
||  N  ->  N  e.  ZZ )
111110ad2antll 483 . . . . . . 7  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  N  e.  ZZ )
11220nnzd 9312 . . . . . . . 8  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
q  e.  ZZ )
113 zsqcl 10525 . . . . . . . 8  |-  ( q  e.  ZZ  ->  (
q ^ 2 )  e.  ZZ )
114112, 113syl 14 . . . . . . 7  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( q ^ 2 )  e.  ZZ )
115 zltnle 9237 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  ( q ^ 2 )  e.  ZZ )  ->  ( N  < 
( q ^ 2 )  <->  -.  ( q ^ 2 )  <_  N ) )
116111, 114, 115syl2anc 409 . . . . . 6  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( N  <  (
q ^ 2 )  <->  -.  ( q ^ 2 )  <_  N )
)
117108, 116mpbid 146 . . . . 5  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  -.  ( q ^ 2 )  <_  N )
118117expr 373 . . . 4  |-  ( (
ph  /\  q  e.  Prime )  ->  ( q  ||  N  ->  -.  (
q ^ 2 )  <_  N ) )
119118con2d 614 . . 3  |-  ( (
ph  /\  q  e.  Prime )  ->  ( (
q ^ 2 )  <_  N  ->  -.  q  ||  N ) )
120119ralrimiva 2539 . 2  |-  ( ph  ->  A. q  e.  Prime  ( ( q ^ 2 )  <_  N  ->  -.  q  ||  N ) )
121 isprm5 12074 . 2  |-  ( N  e.  Prime  <->  ( N  e.  ( ZZ>= `  2 )  /\  A. q  e.  Prime  ( ( q ^ 2 )  <_  N  ->  -.  q  ||  N ) ) )
12212, 120, 121sylanbrc 414 1  |-  ( ph  ->  N  e.  Prime )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 968    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   RRcr 7752   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758    < clt 7933    <_ cle 7934    - cmin 8069    / cdiv 8568   NNcn 8857   2c2 8908   NN0cn0 9114   ZZcz 9191   ZZ>=cuz 9466    mod cmo 10257   ^cexp 10454    || cdvds 11727    gcd cgcd 11875   Primecprime 12039    pCnt cpc 12216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-2o 6385  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-xnn0 9178  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-proddc 11492  df-dvds 11728  df-gcd 11876  df-prm 12040  df-odz 12142  df-phi 12143  df-pc 12217
This theorem is referenced by:  pockthi  12288
  Copyright terms: Public domain W3C validator