ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pockthg Unicode version

Theorem pockthg 12495
Description: The generalized Pocklington's theorem. If  N  -  1  =  A  x.  B where  B  <  A, then  N is prime if and only if for every prime factor  p of  A, there is an  x such that  x ^ ( N  -  1 )  =  1 (  mod 
N ) and  gcd  ( x ^ ( ( N  -  1 )  /  p )  -  1 ,  N )  =  1. (Contributed by Mario Carneiro, 2-Mar-2014.)
Hypotheses
Ref Expression
pockthg.1  |-  ( ph  ->  A  e.  NN )
pockthg.2  |-  ( ph  ->  B  e.  NN )
pockthg.3  |-  ( ph  ->  B  <  A )
pockthg.4  |-  ( ph  ->  N  =  ( ( A  x.  B )  +  1 ) )
pockthg.5  |-  ( ph  ->  A. p  e.  Prime  ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )
Assertion
Ref Expression
pockthg  |-  ( ph  ->  N  e.  Prime )
Distinct variable groups:    x, p, N    A, p, x    ph, p, x
Allowed substitution hints:    B( x, p)

Proof of Theorem pockthg
Dummy variable  q is distinct from all other variables.
StepHypRef Expression
1 pockthg.4 . . 3  |-  ( ph  ->  N  =  ( ( A  x.  B )  +  1 ) )
2 pockthg.1 . . . . . . 7  |-  ( ph  ->  A  e.  NN )
3 pockthg.2 . . . . . . 7  |-  ( ph  ->  B  e.  NN )
42, 3nnmulcld 9031 . . . . . 6  |-  ( ph  ->  ( A  x.  B
)  e.  NN )
5 nnuz 9628 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
64, 5eleqtrdi 2286 . . . . 5  |-  ( ph  ->  ( A  x.  B
)  e.  ( ZZ>= ` 
1 ) )
7 eluzp1p1 9618 . . . . 5  |-  ( ( A  x.  B )  e.  ( ZZ>= `  1
)  ->  ( ( A  x.  B )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
86, 7syl 14 . . . 4  |-  ( ph  ->  ( ( A  x.  B )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
9 df-2 9041 . . . . 5  |-  2  =  ( 1  +  1 )
109fveq2i 5557 . . . 4  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
118, 10eleqtrrdi 2287 . . 3  |-  ( ph  ->  ( ( A  x.  B )  +  1 )  e.  ( ZZ>= ` 
2 ) )
121, 11eqeltrd 2270 . 2  |-  ( ph  ->  N  e.  ( ZZ>= ` 
2 ) )
13 eluzelre 9602 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  RR )
1412, 13syl 14 . . . . . . . 8  |-  ( ph  ->  N  e.  RR )
1514adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  N  e.  RR )
162nnred 8995 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
1716resqcld 10770 . . . . . . . 8  |-  ( ph  ->  ( A ^ 2 )  e.  RR )
1817adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A ^ 2 )  e.  RR )
19 prmnn 12248 . . . . . . . . . 10  |-  ( q  e.  Prime  ->  q  e.  NN )
2019ad2antrl 490 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
q  e.  NN )
2120nnred 8995 . . . . . . . 8  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
q  e.  RR )
2221resqcld 10770 . . . . . . 7  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( q ^ 2 )  e.  RR )
23 pockthg.3 . . . . . . . . . . 11  |-  ( ph  ->  B  <  A )
243nnred 8995 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  RR )
252nngt0d 9026 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  A )
26 ltmul2 8875 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( B  <  A  <->  ( A  x.  B )  <  ( A  x.  A ) ) )
2724, 16, 16, 25, 26syl112anc 1253 . . . . . . . . . . 11  |-  ( ph  ->  ( B  <  A  <->  ( A  x.  B )  <  ( A  x.  A ) ) )
2823, 27mpbid 147 . . . . . . . . . 10  |-  ( ph  ->  ( A  x.  B
)  <  ( A  x.  A ) )
292, 2nnmulcld 9031 . . . . . . . . . . 11  |-  ( ph  ->  ( A  x.  A
)  e.  NN )
30 nnltp1le 9377 . . . . . . . . . . 11  |-  ( ( ( A  x.  B
)  e.  NN  /\  ( A  x.  A
)  e.  NN )  ->  ( ( A  x.  B )  < 
( A  x.  A
)  <->  ( ( A  x.  B )  +  1 )  <_  ( A  x.  A )
) )
314, 29, 30syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  x.  B )  <  ( A  x.  A )  <->  ( ( A  x.  B
)  +  1 )  <_  ( A  x.  A ) ) )
3228, 31mpbid 147 . . . . . . . . 9  |-  ( ph  ->  ( ( A  x.  B )  +  1 )  <_  ( A  x.  A ) )
332nncnd 8996 . . . . . . . . . 10  |-  ( ph  ->  A  e.  CC )
3433sqvald 10741 . . . . . . . . 9  |-  ( ph  ->  ( A ^ 2 )  =  ( A  x.  A ) )
3532, 1, 343brtr4d 4061 . . . . . . . 8  |-  ( ph  ->  N  <_  ( A ^ 2 ) )
3635adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  N  <_  ( A ^
2 ) )
37 pockthg.5 . . . . . . . . . . . . 13  |-  ( ph  ->  A. p  e.  Prime  ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )
3837adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A. p  e.  Prime  ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )
39 prmnn 12248 . . . . . . . . . . . . . . . . . . . 20  |-  ( p  e.  Prime  ->  p  e.  NN )
4039ad2antrl 490 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  p  e.  NN )
4140nncnd 8996 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  p  e.  CC )
4241exp1d 10739 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  ( p ^ 1 )  =  p )
43 nnge1 9005 . . . . . . . . . . . . . . . . . . 19  |-  ( ( p  pCnt  A )  e.  NN  ->  1  <_  ( p  pCnt  A )
)
4443ad2antll 491 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  1  <_  ( p  pCnt  A )
)
45 simprl 529 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  p  e.  Prime )
462nnzd 9438 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  A  e.  ZZ )
4746ad2antrr 488 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  A  e.  ZZ )
48 1nn0 9256 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  NN0
4948a1i 9 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  1  e.  NN0 )
50 pcdvdsb 12458 . . . . . . . . . . . . . . . . . . 19  |-  ( ( p  e.  Prime  /\  A  e.  ZZ  /\  1  e. 
NN0 )  ->  (
1  <_  ( p  pCnt  A )  <->  ( p ^ 1 )  ||  A ) )
5145, 47, 49, 50syl3anc 1249 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  ( 1  <_  ( p  pCnt  A )  <->  ( p ^
1 )  ||  A
) )
5244, 51mpbid 147 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  ( p ^ 1 )  ||  A )
5342, 52eqbrtrrd 4053 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  p  ||  A
)
54 simpl1 1002 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  ph )
5554, 2syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  A  e.  NN )
5654, 3syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  B  e.  NN )
5754, 23syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  B  <  A )
5854, 1syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  N  =  ( ( A  x.  B )  +  1 ) )
59 simpl2l 1052 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  -> 
q  e.  Prime )
60 simpl2r 1053 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  -> 
q  ||  N )
61 simpl3l 1054 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  p  e.  Prime )
62 simpl3r 1055 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  -> 
( p  pCnt  A
)  e.  NN )
63 simprl 529 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  x  e.  ZZ )
64 simprrl 539 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  -> 
( ( x ^
( N  -  1 ) )  mod  N
)  =  1 )
65 simprrr 540 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  -> 
( ( ( x ^ ( ( N  -  1 )  /  p ) )  - 
1 )  gcd  N
)  =  1 )
6655, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65pockthlem 12494 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  -> 
( p  pCnt  A
)  <_  ( p  pCnt  ( q  -  1 ) ) )
6766rexlimdvaa 2612 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  -> 
( E. x  e.  ZZ  ( ( ( x ^ ( N  -  1 ) )  mod  N )  =  1  /\  ( ( ( x ^ (
( N  -  1 )  /  p ) )  -  1 )  gcd  N )  =  1 )  ->  (
p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) ) )
68673expa 1205 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  ( E. x  e.  ZZ  (
( ( x ^
( N  -  1 ) )  mod  N
)  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  - 
1 )  gcd  N
)  =  1 )  ->  ( p  pCnt  A )  <_  ( p  pCnt  ( q  -  1 ) ) ) )
6953, 68embantd 56 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  ( (
p  ||  A  ->  E. x  e.  ZZ  (
( ( x ^
( N  -  1 ) )  mod  N
)  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  - 
1 )  gcd  N
)  =  1 ) )  ->  ( p  pCnt  A )  <_  (
p  pCnt  ( q  -  1 ) ) ) )
7069expr 375 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( ( p  pCnt  A )  e.  NN  ->  ( ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) )  ->  (
p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) ) ) )
71 id 19 . . . . . . . . . . . . . . . . . 18  |-  ( p  e.  Prime  ->  p  e. 
Prime )
72 prmuz2 12269 . . . . . . . . . . . . . . . . . . . 20  |-  ( q  e.  Prime  ->  q  e.  ( ZZ>= `  2 )
)
73 uz2m1nn 9670 . . . . . . . . . . . . . . . . . . . 20  |-  ( q  e.  ( ZZ>= `  2
)  ->  ( q  -  1 )  e.  NN )
7472, 73syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( q  e.  Prime  ->  ( q  -  1 )  e.  NN )
7574ad2antrl 490 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( q  -  1 )  e.  NN )
76 pccl 12437 . . . . . . . . . . . . . . . . . 18  |-  ( ( p  e.  Prime  /\  (
q  -  1 )  e.  NN )  -> 
( p  pCnt  (
q  -  1 ) )  e.  NN0 )
7771, 75, 76syl2anr 290 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( p  pCnt  (
q  -  1 ) )  e.  NN0 )
7877nn0ge0d 9296 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
0  <_  ( p  pCnt  ( q  -  1 ) ) )
79 breq1 4032 . . . . . . . . . . . . . . . 16  |-  ( ( p  pCnt  A )  =  0  ->  (
( p  pCnt  A
)  <_  ( p  pCnt  ( q  -  1 ) )  <->  0  <_  ( p  pCnt  ( q  -  1 ) ) ) )
8078, 79syl5ibrcom 157 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( ( p  pCnt  A )  =  0  -> 
( p  pCnt  A
)  <_  ( p  pCnt  ( q  -  1 ) ) ) )
8180a1dd 48 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( ( p  pCnt  A )  =  0  -> 
( ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) )  ->  (
p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) ) ) )
82 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  ->  p  e.  Prime )
832ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  ->  A  e.  NN )
8482, 83pccld 12438 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( p  pCnt  A
)  e.  NN0 )
85 elnn0 9242 . . . . . . . . . . . . . . 15  |-  ( ( p  pCnt  A )  e.  NN0  <->  ( ( p 
pCnt  A )  e.  NN  \/  ( p  pCnt  A
)  =  0 ) )
8684, 85sylib 122 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( ( p  pCnt  A )  e.  NN  \/  ( p  pCnt  A )  =  0 ) )
8770, 81, 86mpjaod 719 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) )  ->  (
p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) ) )
8887ralimdva 2561 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A. p  e. 
Prime  ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) )  ->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  ( q  -  1 ) ) ) )
8938, 88mpd 13 . . . . . . . . . . 11  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) )
9075nnzd 9438 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( q  -  1 )  e.  ZZ )
91 pc2dvds 12468 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( q  -  1 )  e.  ZZ )  ->  ( A  ||  ( q  -  1 )  <->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) ) )
9246, 90, 91syl2an2r 595 . . . . . . . . . . 11  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A  ||  (
q  -  1 )  <->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) ) )
9389, 92mpbird 167 . . . . . . . . . 10  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A  ||  ( q  - 
1 ) )
94 dvdsle 11986 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( q  -  1 )  e.  NN )  ->  ( A  ||  ( q  -  1 )  ->  A  <_  ( q  -  1 ) ) )
9546, 75, 94syl2an2r 595 . . . . . . . . . 10  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A  ||  (
q  -  1 )  ->  A  <_  (
q  -  1 ) ) )
9693, 95mpd 13 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A  <_  ( q  - 
1 ) )
972nnnn0d 9293 . . . . . . . . . 10  |-  ( ph  ->  A  e.  NN0 )
9820nnnn0d 9293 . . . . . . . . . 10  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
q  e.  NN0 )
99 nn0ltlem1 9381 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  q  e.  NN0 )  -> 
( A  <  q  <->  A  <_  ( q  - 
1 ) ) )
10097, 98, 99syl2an2r 595 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A  <  q  <->  A  <_  ( q  - 
1 ) ) )
10196, 100mpbird 167 . . . . . . . 8  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A  <  q )
10216adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A  e.  RR )
10397nn0ge0d 9296 . . . . . . . . . 10  |-  ( ph  ->  0  <_  A )
104103adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
0  <_  A )
10598nn0ge0d 9296 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
0  <_  q )
106102, 21, 104, 105lt2sqd 10775 . . . . . . . 8  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A  <  q  <->  ( A ^ 2 )  <  ( q ^
2 ) ) )
107101, 106mpbid 147 . . . . . . 7  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A ^ 2 )  <  ( q ^ 2 ) )
10815, 18, 22, 36, 107lelttrd 8144 . . . . . 6  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  N  <  ( q ^
2 ) )
109 dvdszrcl 11935 . . . . . . . . 9  |-  ( q 
||  N  ->  (
q  e.  ZZ  /\  N  e.  ZZ )
)
110109simprd 114 . . . . . . . 8  |-  ( q 
||  N  ->  N  e.  ZZ )
111110ad2antll 491 . . . . . . 7  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  N  e.  ZZ )
11220nnzd 9438 . . . . . . . 8  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
q  e.  ZZ )
113 zsqcl 10681 . . . . . . . 8  |-  ( q  e.  ZZ  ->  (
q ^ 2 )  e.  ZZ )
114112, 113syl 14 . . . . . . 7  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( q ^ 2 )  e.  ZZ )
115 zltnle 9363 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  ( q ^ 2 )  e.  ZZ )  ->  ( N  < 
( q ^ 2 )  <->  -.  ( q ^ 2 )  <_  N ) )
116111, 114, 115syl2anc 411 . . . . . 6  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( N  <  (
q ^ 2 )  <->  -.  ( q ^ 2 )  <_  N )
)
117108, 116mpbid 147 . . . . 5  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  -.  ( q ^ 2 )  <_  N )
118117expr 375 . . . 4  |-  ( (
ph  /\  q  e.  Prime )  ->  ( q  ||  N  ->  -.  (
q ^ 2 )  <_  N ) )
119118con2d 625 . . 3  |-  ( (
ph  /\  q  e.  Prime )  ->  ( (
q ^ 2 )  <_  N  ->  -.  q  ||  N ) )
120119ralrimiva 2567 . 2  |-  ( ph  ->  A. q  e.  Prime  ( ( q ^ 2 )  <_  N  ->  -.  q  ||  N ) )
121 isprm5 12280 . 2  |-  ( N  e.  Prime  <->  ( N  e.  ( ZZ>= `  2 )  /\  A. q  e.  Prime  ( ( q ^ 2 )  <_  N  ->  -.  q  ||  N ) ) )
12212, 120, 121sylanbrc 417 1  |-  ( ph  ->  N  e.  Prime )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   RRcr 7871   0cc0 7872   1c1 7873    + caddc 7875    x. cmul 7877    < clt 8054    <_ cle 8055    - cmin 8190    / cdiv 8691   NNcn 8982   2c2 9033   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592    mod cmo 10393   ^cexp 10609    || cdvds 11930    gcd cgcd 12079   Primecprime 12245    pCnt cpc 12422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-2o 6470  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-xnn0 9304  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-proddc 11694  df-dvds 11931  df-gcd 12080  df-prm 12246  df-odz 12348  df-phi 12349  df-pc 12423
This theorem is referenced by:  pockthi  12496
  Copyright terms: Public domain W3C validator