ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  findcard2d Unicode version

Theorem findcard2d 6893
Description: Deduction version of findcard2 6891. If you also need  y  e.  Fin (which doesn't come for free due to ssfiexmid 6878), use findcard2sd 6894 instead. (Contributed by SO, 16-Jul-2018.)
Hypotheses
Ref Expression
findcard2d.ch  |-  ( x  =  (/)  ->  ( ps  <->  ch ) )
findcard2d.th  |-  ( x  =  y  ->  ( ps 
<->  th ) )
findcard2d.ta  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ps  <->  ta )
)
findcard2d.et  |-  ( x  =  A  ->  ( ps 
<->  et ) )
findcard2d.z  |-  ( ph  ->  ch )
findcard2d.i  |-  ( (
ph  /\  ( y  C_  A  /\  z  e.  ( A  \  y
) ) )  -> 
( th  ->  ta ) )
findcard2d.a  |-  ( ph  ->  A  e.  Fin )
Assertion
Ref Expression
findcard2d  |-  ( ph  ->  et )
Distinct variable groups:    x, A, y, z    ph, x, y, z    ps, y, z    ch, x    th, x    ta, x    et, x
Allowed substitution hints:    ps( x)    ch( y,
z)    th( y, z)    ta( y, z)    et( y, z)

Proof of Theorem findcard2d
StepHypRef Expression
1 ssid 3177 . 2  |-  A  C_  A
2 findcard2d.a . . . 4  |-  ( ph  ->  A  e.  Fin )
32adantr 276 . . 3  |-  ( (
ph  /\  A  C_  A
)  ->  A  e.  Fin )
4 sseq1 3180 . . . . . 6  |-  ( x  =  (/)  ->  ( x 
C_  A  <->  (/)  C_  A
) )
54anbi2d 464 . . . . 5  |-  ( x  =  (/)  ->  ( (
ph  /\  x  C_  A
)  <->  ( ph  /\  (/)  C_  A ) ) )
6 findcard2d.ch . . . . 5  |-  ( x  =  (/)  ->  ( ps  <->  ch ) )
75, 6imbi12d 234 . . . 4  |-  ( x  =  (/)  ->  ( ( ( ph  /\  x  C_  A )  ->  ps ) 
<->  ( ( ph  /\  (/)  C_  A )  ->  ch ) ) )
8 sseq1 3180 . . . . . 6  |-  ( x  =  y  ->  (
x  C_  A  <->  y  C_  A ) )
98anbi2d 464 . . . . 5  |-  ( x  =  y  ->  (
( ph  /\  x  C_  A )  <->  ( ph  /\  y  C_  A )
) )
10 findcard2d.th . . . . 5  |-  ( x  =  y  ->  ( ps 
<->  th ) )
119, 10imbi12d 234 . . . 4  |-  ( x  =  y  ->  (
( ( ph  /\  x  C_  A )  ->  ps )  <->  ( ( ph  /\  y  C_  A )  ->  th ) ) )
12 sseq1 3180 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( x  C_  A 
<->  ( y  u.  {
z } )  C_  A ) )
1312anbi2d 464 . . . . 5  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( ph  /\  x  C_  A )  <->  (
ph  /\  ( y  u.  { z } ) 
C_  A ) ) )
14 findcard2d.ta . . . . 5  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ps  <->  ta )
)
1513, 14imbi12d 234 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( (
ph  /\  x  C_  A
)  ->  ps )  <->  ( ( ph  /\  (
y  u.  { z } )  C_  A
)  ->  ta )
) )
16 sseq1 3180 . . . . . 6  |-  ( x  =  A  ->  (
x  C_  A  <->  A  C_  A
) )
1716anbi2d 464 . . . . 5  |-  ( x  =  A  ->  (
( ph  /\  x  C_  A )  <->  ( ph  /\  A  C_  A )
) )
18 findcard2d.et . . . . 5  |-  ( x  =  A  ->  ( ps 
<->  et ) )
1917, 18imbi12d 234 . . . 4  |-  ( x  =  A  ->  (
( ( ph  /\  x  C_  A )  ->  ps )  <->  ( ( ph  /\  A  C_  A )  ->  et ) ) )
20 findcard2d.z . . . . 5  |-  ( ph  ->  ch )
2120adantr 276 . . . 4  |-  ( (
ph  /\  (/)  C_  A
)  ->  ch )
22 simprl 529 . . . . . . . 8  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( ph  /\  ( y  u.  {
z } )  C_  A ) )  ->  ph )
23 simprr 531 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( ph  /\  ( y  u.  {
z } )  C_  A ) )  -> 
( y  u.  {
z } )  C_  A )
2423unssad 3314 . . . . . . . 8  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( ph  /\  ( y  u.  {
z } )  C_  A ) )  -> 
y  C_  A )
2522, 24jca 306 . . . . . . 7  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( ph  /\  ( y  u.  {
z } )  C_  A ) )  -> 
( ph  /\  y  C_  A ) )
26 id 19 . . . . . . . . . . 11  |-  ( ( y  u.  { z } )  C_  A  ->  ( y  u.  {
z } )  C_  A )
27 vsnid 3626 . . . . . . . . . . . 12  |-  z  e. 
{ z }
28 elun2 3305 . . . . . . . . . . . 12  |-  ( z  e.  { z }  ->  z  e.  ( y  u.  { z } ) )
2927, 28mp1i 10 . . . . . . . . . . 11  |-  ( ( y  u.  { z } )  C_  A  ->  z  e.  ( y  u.  { z } ) )
3026, 29sseldd 3158 . . . . . . . . . 10  |-  ( ( y  u.  { z } )  C_  A  ->  z  e.  A )
3130ad2antll 491 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( ph  /\  ( y  u.  {
z } )  C_  A ) )  -> 
z  e.  A )
32 simplr 528 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( ph  /\  ( y  u.  {
z } )  C_  A ) )  ->  -.  z  e.  y
)
3331, 32eldifd 3141 . . . . . . . 8  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( ph  /\  ( y  u.  {
z } )  C_  A ) )  -> 
z  e.  ( A 
\  y ) )
34 findcard2d.i . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  A  /\  z  e.  ( A  \  y
) ) )  -> 
( th  ->  ta ) )
3522, 24, 33, 34syl12anc 1236 . . . . . . 7  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( ph  /\  ( y  u.  {
z } )  C_  A ) )  -> 
( th  ->  ta ) )
3625, 35embantd 56 . . . . . 6  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( ph  /\  ( y  u.  {
z } )  C_  A ) )  -> 
( ( ( ph  /\  y  C_  A )  ->  th )  ->  ta ) )
3736ex 115 . . . . 5  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( ph  /\  ( y  u. 
{ z } ) 
C_  A )  -> 
( ( ( ph  /\  y  C_  A )  ->  th )  ->  ta ) ) )
3837com23 78 . . . 4  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( (
( ph  /\  y  C_  A )  ->  th )  ->  ( ( ph  /\  ( y  u.  {
z } )  C_  A )  ->  ta ) ) )
397, 11, 15, 19, 21, 38findcard2s 6892 . . 3  |-  ( A  e.  Fin  ->  (
( ph  /\  A  C_  A )  ->  et ) )
403, 39mpcom 36 . 2  |-  ( (
ph  /\  A  C_  A
)  ->  et )
411, 40mpan2 425 1  |-  ( ph  ->  et )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148    \ cdif 3128    u. cun 3129    C_ wss 3131   (/)c0 3424   {csn 3594   Fincfn 6742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-er 6537  df-en 6743  df-fin 6745
This theorem is referenced by:  iunfidisj  6947
  Copyright terms: Public domain W3C validator