Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > findcard2d | Unicode version |
Description: Deduction version of findcard2 6879. If you also need (which doesn't come for free due to ssfiexmid 6866), use findcard2sd 6882 instead. (Contributed by SO, 16-Jul-2018.) |
Ref | Expression |
---|---|
findcard2d.ch | |
findcard2d.th | |
findcard2d.ta | |
findcard2d.et | |
findcard2d.z | |
findcard2d.i | |
findcard2d.a |
Ref | Expression |
---|---|
findcard2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3173 | . 2 | |
2 | findcard2d.a | . . . 4 | |
3 | 2 | adantr 276 | . . 3 |
4 | sseq1 3176 | . . . . . 6 | |
5 | 4 | anbi2d 464 | . . . . 5 |
6 | findcard2d.ch | . . . . 5 | |
7 | 5, 6 | imbi12d 234 | . . . 4 |
8 | sseq1 3176 | . . . . . 6 | |
9 | 8 | anbi2d 464 | . . . . 5 |
10 | findcard2d.th | . . . . 5 | |
11 | 9, 10 | imbi12d 234 | . . . 4 |
12 | sseq1 3176 | . . . . . 6 | |
13 | 12 | anbi2d 464 | . . . . 5 |
14 | findcard2d.ta | . . . . 5 | |
15 | 13, 14 | imbi12d 234 | . . . 4 |
16 | sseq1 3176 | . . . . . 6 | |
17 | 16 | anbi2d 464 | . . . . 5 |
18 | findcard2d.et | . . . . 5 | |
19 | 17, 18 | imbi12d 234 | . . . 4 |
20 | findcard2d.z | . . . . 5 | |
21 | 20 | adantr 276 | . . . 4 |
22 | simprl 529 | . . . . . . . 8 | |
23 | simprr 531 | . . . . . . . . 9 | |
24 | 23 | unssad 3310 | . . . . . . . 8 |
25 | 22, 24 | jca 306 | . . . . . . 7 |
26 | id 19 | . . . . . . . . . . 11 | |
27 | vsnid 3621 | . . . . . . . . . . . 12 | |
28 | elun2 3301 | . . . . . . . . . . . 12 | |
29 | 27, 28 | mp1i 10 | . . . . . . . . . . 11 |
30 | 26, 29 | sseldd 3154 | . . . . . . . . . 10 |
31 | 30 | ad2antll 491 | . . . . . . . . 9 |
32 | simplr 528 | . . . . . . . . 9 | |
33 | 31, 32 | eldifd 3137 | . . . . . . . 8 |
34 | findcard2d.i | . . . . . . . 8 | |
35 | 22, 24, 33, 34 | syl12anc 1236 | . . . . . . 7 |
36 | 25, 35 | embantd 56 | . . . . . 6 |
37 | 36 | ex 115 | . . . . 5 |
38 | 37 | com23 78 | . . . 4 |
39 | 7, 11, 15, 19, 21, 38 | findcard2s 6880 | . . 3 |
40 | 3, 39 | mpcom 36 | . 2 |
41 | 1, 40 | mpan2 425 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wb 105 wceq 1353 wcel 2146 cdif 3124 cun 3125 wss 3127 c0 3420 csn 3589 cfn 6730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-er 6525 df-en 6731 df-fin 6733 |
This theorem is referenced by: iunfidisj 6935 |
Copyright terms: Public domain | W3C validator |