Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > findcard2d | Unicode version |
Description: Deduction version of findcard2 6855. If you also need (which doesn't come for free due to ssfiexmid 6842), use findcard2sd 6858 instead. (Contributed by SO, 16-Jul-2018.) |
Ref | Expression |
---|---|
findcard2d.ch | |
findcard2d.th | |
findcard2d.ta | |
findcard2d.et | |
findcard2d.z | |
findcard2d.i | |
findcard2d.a |
Ref | Expression |
---|---|
findcard2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3162 | . 2 | |
2 | findcard2d.a | . . . 4 | |
3 | 2 | adantr 274 | . . 3 |
4 | sseq1 3165 | . . . . . 6 | |
5 | 4 | anbi2d 460 | . . . . 5 |
6 | findcard2d.ch | . . . . 5 | |
7 | 5, 6 | imbi12d 233 | . . . 4 |
8 | sseq1 3165 | . . . . . 6 | |
9 | 8 | anbi2d 460 | . . . . 5 |
10 | findcard2d.th | . . . . 5 | |
11 | 9, 10 | imbi12d 233 | . . . 4 |
12 | sseq1 3165 | . . . . . 6 | |
13 | 12 | anbi2d 460 | . . . . 5 |
14 | findcard2d.ta | . . . . 5 | |
15 | 13, 14 | imbi12d 233 | . . . 4 |
16 | sseq1 3165 | . . . . . 6 | |
17 | 16 | anbi2d 460 | . . . . 5 |
18 | findcard2d.et | . . . . 5 | |
19 | 17, 18 | imbi12d 233 | . . . 4 |
20 | findcard2d.z | . . . . 5 | |
21 | 20 | adantr 274 | . . . 4 |
22 | simprl 521 | . . . . . . . 8 | |
23 | simprr 522 | . . . . . . . . 9 | |
24 | 23 | unssad 3299 | . . . . . . . 8 |
25 | 22, 24 | jca 304 | . . . . . . 7 |
26 | id 19 | . . . . . . . . . . 11 | |
27 | vsnid 3608 | . . . . . . . . . . . 12 | |
28 | elun2 3290 | . . . . . . . . . . . 12 | |
29 | 27, 28 | mp1i 10 | . . . . . . . . . . 11 |
30 | 26, 29 | sseldd 3143 | . . . . . . . . . 10 |
31 | 30 | ad2antll 483 | . . . . . . . . 9 |
32 | simplr 520 | . . . . . . . . 9 | |
33 | 31, 32 | eldifd 3126 | . . . . . . . 8 |
34 | findcard2d.i | . . . . . . . 8 | |
35 | 22, 24, 33, 34 | syl12anc 1226 | . . . . . . 7 |
36 | 25, 35 | embantd 56 | . . . . . 6 |
37 | 36 | ex 114 | . . . . 5 |
38 | 37 | com23 78 | . . . 4 |
39 | 7, 11, 15, 19, 21, 38 | findcard2s 6856 | . . 3 |
40 | 3, 39 | mpcom 36 | . 2 |
41 | 1, 40 | mpan2 422 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cdif 3113 cun 3114 wss 3116 c0 3409 csn 3576 cfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-er 6501 df-en 6707 df-fin 6709 |
This theorem is referenced by: iunfidisj 6911 |
Copyright terms: Public domain | W3C validator |