| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > findcard2d | Unicode version | ||
| Description: Deduction version of findcard2 6986. If you also need |
| Ref | Expression |
|---|---|
| findcard2d.ch |
|
| findcard2d.th |
|
| findcard2d.ta |
|
| findcard2d.et |
|
| findcard2d.z |
|
| findcard2d.i |
|
| findcard2d.a |
|
| Ref | Expression |
|---|---|
| findcard2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3213 |
. 2
| |
| 2 | findcard2d.a |
. . . 4
| |
| 3 | 2 | adantr 276 |
. . 3
|
| 4 | sseq1 3216 |
. . . . . 6
| |
| 5 | 4 | anbi2d 464 |
. . . . 5
|
| 6 | findcard2d.ch |
. . . . 5
| |
| 7 | 5, 6 | imbi12d 234 |
. . . 4
|
| 8 | sseq1 3216 |
. . . . . 6
| |
| 9 | 8 | anbi2d 464 |
. . . . 5
|
| 10 | findcard2d.th |
. . . . 5
| |
| 11 | 9, 10 | imbi12d 234 |
. . . 4
|
| 12 | sseq1 3216 |
. . . . . 6
| |
| 13 | 12 | anbi2d 464 |
. . . . 5
|
| 14 | findcard2d.ta |
. . . . 5
| |
| 15 | 13, 14 | imbi12d 234 |
. . . 4
|
| 16 | sseq1 3216 |
. . . . . 6
| |
| 17 | 16 | anbi2d 464 |
. . . . 5
|
| 18 | findcard2d.et |
. . . . 5
| |
| 19 | 17, 18 | imbi12d 234 |
. . . 4
|
| 20 | findcard2d.z |
. . . . 5
| |
| 21 | 20 | adantr 276 |
. . . 4
|
| 22 | simprl 529 |
. . . . . . . 8
| |
| 23 | simprr 531 |
. . . . . . . . 9
| |
| 24 | 23 | unssad 3350 |
. . . . . . . 8
|
| 25 | 22, 24 | jca 306 |
. . . . . . 7
|
| 26 | id 19 |
. . . . . . . . . . 11
| |
| 27 | vsnid 3665 |
. . . . . . . . . . . 12
| |
| 28 | elun2 3341 |
. . . . . . . . . . . 12
| |
| 29 | 27, 28 | mp1i 10 |
. . . . . . . . . . 11
|
| 30 | 26, 29 | sseldd 3194 |
. . . . . . . . . 10
|
| 31 | 30 | ad2antll 491 |
. . . . . . . . 9
|
| 32 | simplr 528 |
. . . . . . . . 9
| |
| 33 | 31, 32 | eldifd 3176 |
. . . . . . . 8
|
| 34 | findcard2d.i |
. . . . . . . 8
| |
| 35 | 22, 24, 33, 34 | syl12anc 1248 |
. . . . . . 7
|
| 36 | 25, 35 | embantd 56 |
. . . . . 6
|
| 37 | 36 | ex 115 |
. . . . 5
|
| 38 | 37 | com23 78 |
. . . 4
|
| 39 | 7, 11, 15, 19, 21, 38 | findcard2s 6987 |
. . 3
|
| 40 | 3, 39 | mpcom 36 |
. 2
|
| 41 | 1, 40 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-er 6620 df-en 6828 df-fin 6830 |
| This theorem is referenced by: iunfidisj 7048 |
| Copyright terms: Public domain | W3C validator |