Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > findcard2d | Unicode version |
Description: Deduction version of findcard2 6867. If you also need (which doesn't come for free due to ssfiexmid 6854), use findcard2sd 6870 instead. (Contributed by SO, 16-Jul-2018.) |
Ref | Expression |
---|---|
findcard2d.ch | |
findcard2d.th | |
findcard2d.ta | |
findcard2d.et | |
findcard2d.z | |
findcard2d.i | |
findcard2d.a |
Ref | Expression |
---|---|
findcard2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3167 | . 2 | |
2 | findcard2d.a | . . . 4 | |
3 | 2 | adantr 274 | . . 3 |
4 | sseq1 3170 | . . . . . 6 | |
5 | 4 | anbi2d 461 | . . . . 5 |
6 | findcard2d.ch | . . . . 5 | |
7 | 5, 6 | imbi12d 233 | . . . 4 |
8 | sseq1 3170 | . . . . . 6 | |
9 | 8 | anbi2d 461 | . . . . 5 |
10 | findcard2d.th | . . . . 5 | |
11 | 9, 10 | imbi12d 233 | . . . 4 |
12 | sseq1 3170 | . . . . . 6 | |
13 | 12 | anbi2d 461 | . . . . 5 |
14 | findcard2d.ta | . . . . 5 | |
15 | 13, 14 | imbi12d 233 | . . . 4 |
16 | sseq1 3170 | . . . . . 6 | |
17 | 16 | anbi2d 461 | . . . . 5 |
18 | findcard2d.et | . . . . 5 | |
19 | 17, 18 | imbi12d 233 | . . . 4 |
20 | findcard2d.z | . . . . 5 | |
21 | 20 | adantr 274 | . . . 4 |
22 | simprl 526 | . . . . . . . 8 | |
23 | simprr 527 | . . . . . . . . 9 | |
24 | 23 | unssad 3304 | . . . . . . . 8 |
25 | 22, 24 | jca 304 | . . . . . . 7 |
26 | id 19 | . . . . . . . . . . 11 | |
27 | vsnid 3615 | . . . . . . . . . . . 12 | |
28 | elun2 3295 | . . . . . . . . . . . 12 | |
29 | 27, 28 | mp1i 10 | . . . . . . . . . . 11 |
30 | 26, 29 | sseldd 3148 | . . . . . . . . . 10 |
31 | 30 | ad2antll 488 | . . . . . . . . 9 |
32 | simplr 525 | . . . . . . . . 9 | |
33 | 31, 32 | eldifd 3131 | . . . . . . . 8 |
34 | findcard2d.i | . . . . . . . 8 | |
35 | 22, 24, 33, 34 | syl12anc 1231 | . . . . . . 7 |
36 | 25, 35 | embantd 56 | . . . . . 6 |
37 | 36 | ex 114 | . . . . 5 |
38 | 37 | com23 78 | . . . 4 |
39 | 7, 11, 15, 19, 21, 38 | findcard2s 6868 | . . 3 |
40 | 3, 39 | mpcom 36 | . 2 |
41 | 1, 40 | mpan2 423 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cdif 3118 cun 3119 wss 3121 c0 3414 csn 3583 cfn 6718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-er 6513 df-en 6719 df-fin 6721 |
This theorem is referenced by: iunfidisj 6923 |
Copyright terms: Public domain | W3C validator |