| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqnetri | Unicode version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) | 
| Ref | Expression | 
|---|---|
| eqnetr.1 | 
 | 
| eqnetr.2 | 
 | 
| Ref | Expression | 
|---|---|
| eqnetri | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqnetr.2 | 
. 2
 | |
| 2 | eqnetr.1 | 
. . 3
 | |
| 3 | 2 | neeq1i 2382 | 
. 2
 | 
| 4 | 1, 3 | mpbir 146 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 | 
| This theorem is referenced by: eqnetrri 2392 2on0 6484 1n0 6490 basendxnplusgndx 12802 plusgndxnmulrndx 12810 basendxnmulrndx 12811 | 
| Copyright terms: Public domain | W3C validator |