ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqnetri Unicode version

Theorem eqnetri 2272
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
eqnetr.1  |-  A  =  B
eqnetr.2  |-  B  =/= 
C
Assertion
Ref Expression
eqnetri  |-  A  =/= 
C

Proof of Theorem eqnetri
StepHypRef Expression
1 eqnetr.2 . 2  |-  B  =/= 
C
2 eqnetr.1 . . 3  |-  A  =  B
32neeq1i 2264 . 2  |-  ( A  =/=  C  <->  B  =/=  C )
41, 3mpbir 144 1  |-  A  =/= 
C
Colors of variables: wff set class
Syntax hints:    = wceq 1285    =/= wne 2249
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-5 1377  ax-gen 1379  ax-4 1441  ax-17 1460  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-cleq 2076  df-ne 2250
This theorem is referenced by:  eqnetrri  2274  2on0  6123  1n0  6129
  Copyright terms: Public domain W3C validator