Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqnetri | Unicode version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
eqnetr.1 | |
eqnetr.2 |
Ref | Expression |
---|---|
eqnetri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqnetr.2 | . 2 | |
2 | eqnetr.1 | . . 3 | |
3 | 2 | neeq1i 2339 | . 2 |
4 | 1, 3 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1332 wne 2324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1424 ax-gen 1426 ax-4 1487 ax-17 1503 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-cleq 2147 df-ne 2325 |
This theorem is referenced by: eqnetrri 2349 2on0 6363 1n0 6369 basendxnplusgndx 12235 plusgndxnmulrndx 12242 basendxnmulrndx 12243 |
Copyright terms: Public domain | W3C validator |