ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2on0 Unicode version

Theorem 2on0 6441
Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.)
Assertion
Ref Expression
2on0  |-  2o  =/=  (/)

Proof of Theorem 2on0
StepHypRef Expression
1 df-2o 6432 . 2  |-  2o  =  suc  1o
2 1on 6438 . . 3  |-  1o  e.  On
3 nsuceq0g 4430 . . 3  |-  ( 1o  e.  On  ->  suc  1o  =/=  (/) )
42, 3ax-mp 5 . 2  |-  suc  1o  =/=  (/)
51, 4eqnetri 2380 1  |-  2o  =/=  (/)
Colors of variables: wff set class
Syntax hints:    e. wcel 2158    =/= wne 2357   (/)c0 3434   Oncon0 4375   suc csuc 4377   1oc1o 6424   2oc2o 6425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-uni 3822  df-tr 4114  df-iord 4378  df-on 4380  df-suc 4383  df-1o 6431  df-2o 6432
This theorem is referenced by:  snnen2oprc  6874  prarloclemcalc  7515  pwle2  15045
  Copyright terms: Public domain W3C validator