ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2on0 Unicode version

Theorem 2on0 6386
Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.)
Assertion
Ref Expression
2on0  |-  2o  =/=  (/)

Proof of Theorem 2on0
StepHypRef Expression
1 df-2o 6377 . 2  |-  2o  =  suc  1o
2 1on 6383 . . 3  |-  1o  e.  On
3 nsuceq0g 4391 . . 3  |-  ( 1o  e.  On  ->  suc  1o  =/=  (/) )
42, 3ax-mp 5 . 2  |-  suc  1o  =/=  (/)
51, 4eqnetri 2357 1  |-  2o  =/=  (/)
Colors of variables: wff set class
Syntax hints:    e. wcel 2135    =/= wne 2334   (/)c0 3405   Oncon0 4336   suc csuc 4338   1oc1o 6369   2oc2o 6370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-nul 4103  ax-pow 4148  ax-pr 4182  ax-un 4406
This theorem depends on definitions:  df-bi 116  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-v 2724  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-nul 3406  df-pw 3556  df-sn 3577  df-pr 3578  df-uni 3785  df-tr 4076  df-iord 4339  df-on 4341  df-suc 4344  df-1o 6376  df-2o 6377
This theorem is referenced by:  snnen2oprc  6818  prarloclemcalc  7435  pwle2  13739
  Copyright terms: Public domain W3C validator