ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2on0 Unicode version

Theorem 2on0 6405
Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.)
Assertion
Ref Expression
2on0  |-  2o  =/=  (/)

Proof of Theorem 2on0
StepHypRef Expression
1 df-2o 6396 . 2  |-  2o  =  suc  1o
2 1on 6402 . . 3  |-  1o  e.  On
3 nsuceq0g 4403 . . 3  |-  ( 1o  e.  On  ->  suc  1o  =/=  (/) )
42, 3ax-mp 5 . 2  |-  suc  1o  =/=  (/)
51, 4eqnetri 2363 1  |-  2o  =/=  (/)
Colors of variables: wff set class
Syntax hints:    e. wcel 2141    =/= wne 2340   (/)c0 3414   Oncon0 4348   suc csuc 4350   1oc1o 6388   2oc2o 6389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356  df-1o 6395  df-2o 6396
This theorem is referenced by:  snnen2oprc  6838  prarloclemcalc  7464  pwle2  14031
  Copyright terms: Public domain W3C validator