ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2on0 Unicode version

Theorem 2on0 6570
Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.)
Assertion
Ref Expression
2on0  |-  2o  =/=  (/)

Proof of Theorem 2on0
StepHypRef Expression
1 df-2o 6561 . 2  |-  2o  =  suc  1o
2 1on 6567 . . 3  |-  1o  e.  On
3 nsuceq0g 4508 . . 3  |-  ( 1o  e.  On  ->  suc  1o  =/=  (/) )
42, 3ax-mp 5 . 2  |-  suc  1o  =/=  (/)
51, 4eqnetri 2423 1  |-  2o  =/=  (/)
Colors of variables: wff set class
Syntax hints:    e. wcel 2200    =/= wne 2400   (/)c0 3491   Oncon0 4453   suc csuc 4455   1oc1o 6553   2oc2o 6554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-tr 4182  df-iord 4456  df-on 4458  df-suc 4461  df-1o 6560  df-2o 6561
This theorem is referenced by:  snnen2oprc  7017  prarloclemcalc  7685  pwle2  16323
  Copyright terms: Public domain W3C validator