ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2on0 Unicode version

Theorem 2on0 6512
Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.)
Assertion
Ref Expression
2on0  |-  2o  =/=  (/)

Proof of Theorem 2on0
StepHypRef Expression
1 df-2o 6503 . 2  |-  2o  =  suc  1o
2 1on 6509 . . 3  |-  1o  e.  On
3 nsuceq0g 4465 . . 3  |-  ( 1o  e.  On  ->  suc  1o  =/=  (/) )
42, 3ax-mp 5 . 2  |-  suc  1o  =/=  (/)
51, 4eqnetri 2399 1  |-  2o  =/=  (/)
Colors of variables: wff set class
Syntax hints:    e. wcel 2176    =/= wne 2376   (/)c0 3460   Oncon0 4410   suc csuc 4412   1oc1o 6495   2oc2o 6496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-tr 4143  df-iord 4413  df-on 4415  df-suc 4418  df-1o 6502  df-2o 6503
This theorem is referenced by:  snnen2oprc  6957  prarloclemcalc  7615  pwle2  15935
  Copyright terms: Public domain W3C validator