![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1n0 | Unicode version |
Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
Ref | Expression |
---|---|
1n0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 6433 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 0ex 4132 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | snnz 3713 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | eqnetri 2370 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-nul 4131 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-v 2741 df-dif 3133 df-un 3135 df-nul 3425 df-sn 3600 df-suc 4373 df-1o 6420 |
This theorem is referenced by: xp01disj 6437 xp01disjl 6438 djulclb 7057 djuinr 7065 eldju2ndl 7074 djune 7080 updjudhf 7081 updjudhcoinrg 7083 nninfisollemne 7132 nninfisol 7134 exmidomni 7143 fodjum 7147 fodju0 7148 ismkvnex 7156 mkvprop 7159 omniwomnimkv 7168 nninfwlporlemd 7173 nninfwlpoimlemginf 7177 2oneel 7258 1pi 7317 unct 12446 fnpr2o 12765 fnpr2ob 12766 fvpr0o 12767 fvpr1o 12768 fvprif 12769 xpsfrnel 12770 bj-charfunbi 14724 pwle2 14910 subctctexmid 14912 pw1nct 14914 peano3nninf 14918 nninfalllem1 14919 nninfall 14920 nninfsellemeq 14925 nninfsellemqall 14926 nninffeq 14931 |
Copyright terms: Public domain | W3C validator |