Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1n0 | Unicode version |
Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
Ref | Expression |
---|---|
1n0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 6370 | . 2 | |
2 | 0ex 4091 | . . 3 | |
3 | 2 | snnz 3678 | . 2 |
4 | 1, 3 | eqnetri 2350 | 1 |
Colors of variables: wff set class |
Syntax hints: wne 2327 c0 3394 csn 3560 c1o 6350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-nul 4090 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-v 2714 df-dif 3104 df-un 3106 df-nul 3395 df-sn 3566 df-suc 4330 df-1o 6357 |
This theorem is referenced by: xp01disj 6374 xp01disjl 6375 djulclb 6989 djuinr 6997 eldju2ndl 7006 djune 7012 updjudhf 7013 updjudhcoinrg 7015 exmidomni 7068 fodjum 7072 fodju0 7073 ismkvnex 7081 mkvprop 7084 omniwomnimkv 7093 1pi 7218 unct 12143 bj-charfunbi 13346 pwle2 13531 subctctexmid 13534 pw1nct 13536 peano3nninf 13541 nninfalllem1 13543 nninfall 13544 nninfsellemeq 13549 nninfsellemqall 13550 nninffeq 13555 |
Copyright terms: Public domain | W3C validator |