| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1n0 | Unicode version | ||
| Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
| Ref | Expression |
|---|---|
| 1n0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 6573 |
. 2
| |
| 2 | 0ex 4210 |
. . 3
| |
| 3 | 2 | snnz 3785 |
. 2
|
| 4 | 1, 3 | eqnetri 2423 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-nul 4209 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 df-sn 3672 df-suc 4461 df-1o 6560 |
| This theorem is referenced by: xp01disj 6577 xp01disjl 6578 rex2dom 6969 djulclb 7218 djuinr 7226 eldju2ndl 7235 djune 7241 updjudhf 7242 updjudhcoinrg 7244 nninfisollemne 7294 nninfisol 7296 exmidomni 7305 fodjum 7309 fodju0 7310 ismkvnex 7318 mkvprop 7321 omniwomnimkv 7330 nninfwlporlemd 7335 nninfwlpoimlemginf 7339 pr2cv1 7364 2oneel 7438 1pi 7498 nninfinf 10660 unct 13008 fnpr2o 13367 fnpr2ob 13368 fvpr0o 13369 fvpr1o 13370 fvprif 13371 xpsfrnel 13372 bj-charfunbi 16132 2omap 16318 pwle2 16323 subctctexmid 16325 pw1nct 16328 peano3nninf 16332 nninfalllem1 16333 nninfall 16334 nninfsellemeq 16339 nninfsellemqall 16340 nninffeq 16345 |
| Copyright terms: Public domain | W3C validator |