| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 1n0 | Unicode version | ||
| Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) | 
| Ref | Expression | 
|---|---|
| 1n0 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df1o2 6487 | 
. 2
 | |
| 2 | 0ex 4160 | 
. . 3
 | |
| 3 | 2 | snnz 3741 | 
. 2
 | 
| 4 | 1, 3 | eqnetri 2390 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-nul 4159 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-v 2765 df-dif 3159 df-un 3161 df-nul 3451 df-sn 3628 df-suc 4406 df-1o 6474 | 
| This theorem is referenced by: xp01disj 6491 xp01disjl 6492 djulclb 7121 djuinr 7129 eldju2ndl 7138 djune 7144 updjudhf 7145 updjudhcoinrg 7147 nninfisollemne 7197 nninfisol 7199 exmidomni 7208 fodjum 7212 fodju0 7213 ismkvnex 7221 mkvprop 7224 omniwomnimkv 7233 nninfwlporlemd 7238 nninfwlpoimlemginf 7242 2oneel 7323 1pi 7382 nninfinf 10535 unct 12659 fnpr2o 12982 fnpr2ob 12983 fvpr0o 12984 fvpr1o 12985 fvprif 12986 xpsfrnel 12987 bj-charfunbi 15457 pwle2 15643 subctctexmid 15645 pw1nct 15647 peano3nninf 15651 nninfalllem1 15652 nninfall 15653 nninfsellemeq 15658 nninfsellemqall 15659 nninffeq 15664 | 
| Copyright terms: Public domain | W3C validator |