| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1n0 | Unicode version | ||
| Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
| Ref | Expression |
|---|---|
| 1n0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 6538 |
. 2
| |
| 2 | 0ex 4187 |
. . 3
| |
| 3 | 2 | snnz 3762 |
. 2
|
| 4 | 1, 3 | eqnetri 2401 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-nul 4186 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-v 2778 df-dif 3176 df-un 3178 df-nul 3469 df-sn 3649 df-suc 4436 df-1o 6525 |
| This theorem is referenced by: xp01disj 6542 xp01disjl 6543 rex2dom 6934 djulclb 7183 djuinr 7191 eldju2ndl 7200 djune 7206 updjudhf 7207 updjudhcoinrg 7209 nninfisollemne 7259 nninfisol 7261 exmidomni 7270 fodjum 7274 fodju0 7275 ismkvnex 7283 mkvprop 7286 omniwomnimkv 7295 nninfwlporlemd 7300 nninfwlpoimlemginf 7304 pr2cv1 7329 2oneel 7403 1pi 7463 nninfinf 10625 unct 12928 fnpr2o 13286 fnpr2ob 13287 fvpr0o 13288 fvpr1o 13289 fvprif 13290 xpsfrnel 13291 bj-charfunbi 15946 2omap 16132 pwle2 16137 subctctexmid 16139 pw1nct 16142 peano3nninf 16146 nninfalllem1 16147 nninfall 16148 nninfsellemeq 16153 nninfsellemqall 16154 nninffeq 16159 |
| Copyright terms: Public domain | W3C validator |