![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1n0 | Unicode version |
Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
Ref | Expression |
---|---|
1n0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 6194 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 0ex 3966 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | snnz 3559 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | eqnetri 2278 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-nul 3965 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-v 2621 df-dif 3001 df-un 3003 df-nul 3287 df-sn 3452 df-suc 4198 df-1o 6181 |
This theorem is referenced by: xp01disj 6198 djulclb 6747 djuinr 6755 djuin 6756 eldju2ndl 6763 djune 6769 updjudhf 6770 updjudhcoinrg 6772 exmidomni 6798 fodjuomnilemm 6801 fodjuomnilem0 6802 1pi 6874 peano3nninf 11897 nninfalllem1 11899 nninfall 11900 nninfsellemeq 11906 nninfsellemqall 11907 |
Copyright terms: Public domain | W3C validator |