| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1n0 | Unicode version | ||
| Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
| Ref | Expression |
|---|---|
| 1n0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 6515 |
. 2
| |
| 2 | 0ex 4171 |
. . 3
| |
| 3 | 2 | snnz 3752 |
. 2
|
| 4 | 1, 3 | eqnetri 2399 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-nul 4170 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-v 2774 df-dif 3168 df-un 3170 df-nul 3461 df-sn 3639 df-suc 4418 df-1o 6502 |
| This theorem is referenced by: xp01disj 6519 xp01disjl 6520 rex2dom 6910 djulclb 7157 djuinr 7165 eldju2ndl 7174 djune 7180 updjudhf 7181 updjudhcoinrg 7183 nninfisollemne 7233 nninfisol 7235 exmidomni 7244 fodjum 7248 fodju0 7249 ismkvnex 7257 mkvprop 7260 omniwomnimkv 7269 nninfwlporlemd 7274 nninfwlpoimlemginf 7278 2oneel 7368 1pi 7428 nninfinf 10588 unct 12813 fnpr2o 13171 fnpr2ob 13172 fvpr0o 13173 fvpr1o 13174 fvprif 13175 xpsfrnel 13176 bj-charfunbi 15747 2omap 15932 pwle2 15935 subctctexmid 15937 pw1nct 15940 peano3nninf 15944 nninfalllem1 15945 nninfall 15946 nninfsellemeq 15951 nninfsellemqall 15952 nninffeq 15957 |
| Copyright terms: Public domain | W3C validator |