Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeq2 | Unicode version |
Description: Equality implies equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2177 | . 2 | |
2 | eqcom 2172 | . 2 | |
3 | eqcom 2172 | . 2 | |
4 | 1, 2, 3 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: eqeq2i 2181 eqeq2d 2182 eqeq12 2183 eleq1 2233 neeq2 2354 alexeq 2856 ceqex 2857 pm13.183 2868 eqeu 2900 mo2icl 2909 mob2 2910 euind 2917 reu6i 2921 reuind 2935 sbc5 2978 csbiebg 3091 sneq 3592 preqr1g 3751 preqr1 3753 prel12 3756 preq12bg 3758 opth 4220 euotd 4237 ordtriexmid 4503 ontriexmidim 4504 wetriext 4559 tfisi 4569 ideqg 4760 resieq 4899 cnveqb 5064 cnveq0 5065 iota5 5178 funopg 5230 fneq2 5285 foeq3 5416 tz6.12f 5523 funbrfv 5533 fnbrfvb 5535 fvelimab 5550 elrnrexdm 5633 eufnfv 5724 f1veqaeq 5746 mpoeq123 5910 ovmpt4g 5973 ovi3 5987 ovg 5989 caovcang 6012 caovcan 6015 frecabcl 6376 nntri3or 6470 dcdifsnid 6481 nnaordex 6505 nnawordex 6506 ereq2 6519 eroveu 6602 2dom 6781 fundmen 6782 xpf1o 6820 nneneq 6833 tridc 6875 fisseneq 6907 fidcenumlemrks 6928 supsnti 6980 isotilem 6981 updjud 7057 exmidontriimlem3 7193 exmidontriimlem4 7194 onntri35 7207 nqtri3or 7351 ltexnqq 7363 aptisr 7734 srpospr 7738 map2psrprg 7760 axpre-apti 7840 nntopi 7849 subval 8104 eqord1 8395 divvalap 8584 nn0ind-raph 9322 frecuzrdgtcl 10361 frecuzrdgfunlem 10368 sqrtrval 10957 summodclem2 11338 prodmodclem2 11533 divides 11744 dvdstr 11783 odd2np1lem 11824 ndvdssub 11882 eucalglt 12004 hashgcdeq 12186 ennnfonelemim 12372 dfgrp2 12725 xmeteq0 13118 trilpo 14040 trirec0 14041 redcwlpo 14052 redc0 14054 reap0 14055 |
Copyright terms: Public domain | W3C validator |