| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq2 | Unicode version | ||
| Description: Equality implies equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2214 |
. 2
| |
| 2 | eqcom 2209 |
. 2
| |
| 3 | eqcom 2209 |
. 2
| |
| 4 | 1, 2, 3 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: eqeq2i 2218 eqeq2d 2219 eqeq12 2220 eleq1 2270 neeq2 2392 alexeq 2906 ceqex 2907 pm13.183 2918 eqeu 2950 mo2icl 2959 mob2 2960 euind 2967 reu6i 2971 reuind 2985 sbc5 3029 csbiebg 3144 sneq 3654 preqr1g 3820 preqr1 3822 prel12 3825 preq12bg 3827 opth 4299 euotd 4317 ordtriexmid 4587 ontriexmidim 4588 wetriext 4643 tfisi 4653 ideqg 4847 resieq 4988 cnveqb 5157 cnveq0 5158 iota5 5272 funopg 5324 fneq2 5382 foeq3 5518 tz6.12f 5628 funbrfv 5640 fnbrfvb 5642 fvelimab 5658 elrnrexdm 5742 eufnfv 5838 f1veqaeq 5861 mpoeq123 6027 ovmpt4g 6091 ovi3 6106 ovg 6108 caovcang 6131 caovcan 6134 uchoice 6246 frecabcl 6508 nntri3or 6602 dcdifsnid 6613 nnaordex 6637 nnawordex 6638 ereq2 6651 eroveu 6736 2dom 6921 fundmen 6922 xpf1o 6966 nneneq 6979 tridc 7022 prfidceq 7051 tpfidceq 7053 fisseneq 7057 fidcenumlemrks 7081 supsnti 7133 isotilem 7134 updjud 7210 nninfwlpoimlemdc 7305 exmidontriimlem3 7366 exmidontriimlem4 7367 onntri35 7383 exmidapne 7407 nqtri3or 7544 ltexnqq 7556 aptisr 7927 srpospr 7931 map2psrprg 7953 axpre-apti 8033 nntopi 8042 subval 8299 eqord1 8591 divvalap 8782 nn0ind-raph 9525 frecuzrdgtcl 10594 frecuzrdgfunlem 10601 wrdind 11213 wrd2ind 11214 reuccatpfxs1lem 11237 sqrtrval 11426 summodclem2 11808 prodmodclem2 12003 divides 12215 dvdstr 12254 odd2np1lem 12298 ndvdssub 12356 bitsinv1 12388 eucalglt 12494 hashgcdeq 12677 ennnfonelemim 12910 imasaddfnlemg 13261 dfgrp2 13474 grpidinv 13506 dfgrp3mlem 13545 isdomn 14146 xmeteq0 14946 mpodvdsmulf1o 15577 gausslemma2dlem0i 15649 upgredgpr 15853 trilpo 16184 trirec0 16185 redcwlpo 16196 redc0 16198 reap0 16199 |
| Copyright terms: Public domain | W3C validator |