| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq2 | Unicode version | ||
| Description: Equality implies equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2212 |
. 2
| |
| 2 | eqcom 2207 |
. 2
| |
| 3 | eqcom 2207 |
. 2
| |
| 4 | 1, 2, 3 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: eqeq2i 2216 eqeq2d 2217 eqeq12 2218 eleq1 2268 neeq2 2390 alexeq 2899 ceqex 2900 pm13.183 2911 eqeu 2943 mo2icl 2952 mob2 2953 euind 2960 reu6i 2964 reuind 2978 sbc5 3022 csbiebg 3136 sneq 3644 preqr1g 3807 preqr1 3809 prel12 3812 preq12bg 3814 opth 4281 euotd 4299 ordtriexmid 4569 ontriexmidim 4570 wetriext 4625 tfisi 4635 ideqg 4829 resieq 4969 cnveqb 5138 cnveq0 5139 iota5 5253 funopg 5305 fneq2 5363 foeq3 5496 tz6.12f 5605 funbrfv 5617 fnbrfvb 5619 fvelimab 5635 elrnrexdm 5719 eufnfv 5815 f1veqaeq 5838 mpoeq123 6004 ovmpt4g 6068 ovi3 6083 ovg 6085 caovcang 6108 caovcan 6111 uchoice 6223 frecabcl 6485 nntri3or 6579 dcdifsnid 6590 nnaordex 6614 nnawordex 6615 ereq2 6628 eroveu 6713 2dom 6897 fundmen 6898 xpf1o 6941 nneneq 6954 tridc 6996 prfidceq 7025 tpfidceq 7027 fisseneq 7031 fidcenumlemrks 7055 supsnti 7107 isotilem 7108 updjud 7184 nninfwlpoimlemdc 7279 exmidontriimlem3 7335 exmidontriimlem4 7336 onntri35 7349 exmidapne 7372 nqtri3or 7509 ltexnqq 7521 aptisr 7892 srpospr 7896 map2psrprg 7918 axpre-apti 7998 nntopi 8007 subval 8264 eqord1 8556 divvalap 8747 nn0ind-raph 9490 frecuzrdgtcl 10557 frecuzrdgfunlem 10564 sqrtrval 11311 summodclem2 11693 prodmodclem2 11888 divides 12100 dvdstr 12139 odd2np1lem 12183 ndvdssub 12241 bitsinv1 12273 eucalglt 12379 hashgcdeq 12562 ennnfonelemim 12795 imasaddfnlemg 13146 dfgrp2 13359 grpidinv 13391 dfgrp3mlem 13430 isdomn 14031 xmeteq0 14831 mpodvdsmulf1o 15462 gausslemma2dlem0i 15534 trilpo 15986 trirec0 15987 redcwlpo 15998 redc0 16000 reap0 16001 |
| Copyright terms: Public domain | W3C validator |