| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq2 | Unicode version | ||
| Description: Equality implies equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2212 |
. 2
| |
| 2 | eqcom 2207 |
. 2
| |
| 3 | eqcom 2207 |
. 2
| |
| 4 | 1, 2, 3 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: eqeq2i 2216 eqeq2d 2217 eqeq12 2218 eleq1 2268 neeq2 2390 alexeq 2899 ceqex 2900 pm13.183 2911 eqeu 2943 mo2icl 2952 mob2 2953 euind 2960 reu6i 2964 reuind 2978 sbc5 3022 csbiebg 3136 sneq 3644 preqr1g 3807 preqr1 3809 prel12 3812 preq12bg 3814 opth 4282 euotd 4300 ordtriexmid 4570 ontriexmidim 4571 wetriext 4626 tfisi 4636 ideqg 4830 resieq 4970 cnveqb 5139 cnveq0 5140 iota5 5254 funopg 5306 fneq2 5364 foeq3 5498 tz6.12f 5607 funbrfv 5619 fnbrfvb 5621 fvelimab 5637 elrnrexdm 5721 eufnfv 5817 f1veqaeq 5840 mpoeq123 6006 ovmpt4g 6070 ovi3 6085 ovg 6087 caovcang 6110 caovcan 6113 uchoice 6225 frecabcl 6487 nntri3or 6581 dcdifsnid 6592 nnaordex 6616 nnawordex 6617 ereq2 6630 eroveu 6715 2dom 6899 fundmen 6900 xpf1o 6943 nneneq 6956 tridc 6998 prfidceq 7027 tpfidceq 7029 fisseneq 7033 fidcenumlemrks 7057 supsnti 7109 isotilem 7110 updjud 7186 nninfwlpoimlemdc 7281 exmidontriimlem3 7337 exmidontriimlem4 7338 onntri35 7351 exmidapne 7374 nqtri3or 7511 ltexnqq 7523 aptisr 7894 srpospr 7898 map2psrprg 7920 axpre-apti 8000 nntopi 8009 subval 8266 eqord1 8558 divvalap 8749 nn0ind-raph 9492 frecuzrdgtcl 10559 frecuzrdgfunlem 10566 sqrtrval 11344 summodclem2 11726 prodmodclem2 11921 divides 12133 dvdstr 12172 odd2np1lem 12216 ndvdssub 12274 bitsinv1 12306 eucalglt 12412 hashgcdeq 12595 ennnfonelemim 12828 imasaddfnlemg 13179 dfgrp2 13392 grpidinv 13424 dfgrp3mlem 13463 isdomn 14064 xmeteq0 14864 mpodvdsmulf1o 15495 gausslemma2dlem0i 15567 trilpo 16019 trirec0 16020 redcwlpo 16031 redc0 16033 reap0 16034 |
| Copyright terms: Public domain | W3C validator |