| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq2 | Unicode version | ||
| Description: Equality implies equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2203 |
. 2
| |
| 2 | eqcom 2198 |
. 2
| |
| 3 | eqcom 2198 |
. 2
| |
| 4 | 1, 2, 3 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: eqeq2i 2207 eqeq2d 2208 eqeq12 2209 eleq1 2259 neeq2 2381 alexeq 2890 ceqex 2891 pm13.183 2902 eqeu 2934 mo2icl 2943 mob2 2944 euind 2951 reu6i 2955 reuind 2969 sbc5 3013 csbiebg 3127 sneq 3634 preqr1g 3797 preqr1 3799 prel12 3802 preq12bg 3804 opth 4271 euotd 4288 ordtriexmid 4558 ontriexmidim 4559 wetriext 4614 tfisi 4624 ideqg 4818 resieq 4957 cnveqb 5126 cnveq0 5127 iota5 5241 funopg 5293 fneq2 5348 foeq3 5481 tz6.12f 5590 funbrfv 5602 fnbrfvb 5604 fvelimab 5620 elrnrexdm 5704 eufnfv 5796 f1veqaeq 5819 mpoeq123 5985 ovmpt4g 6049 ovi3 6064 ovg 6066 caovcang 6089 caovcan 6092 uchoice 6204 frecabcl 6466 nntri3or 6560 dcdifsnid 6571 nnaordex 6595 nnawordex 6596 ereq2 6609 eroveu 6694 2dom 6873 fundmen 6874 xpf1o 6914 nneneq 6927 tridc 6969 prfidceq 6998 tpfidceq 7000 fisseneq 7004 fidcenumlemrks 7028 supsnti 7080 isotilem 7081 updjud 7157 nninfwlpoimlemdc 7252 exmidontriimlem3 7306 exmidontriimlem4 7307 onntri35 7320 exmidapne 7343 nqtri3or 7480 ltexnqq 7492 aptisr 7863 srpospr 7867 map2psrprg 7889 axpre-apti 7969 nntopi 7978 subval 8235 eqord1 8527 divvalap 8718 nn0ind-raph 9460 frecuzrdgtcl 10521 frecuzrdgfunlem 10528 sqrtrval 11182 summodclem2 11564 prodmodclem2 11759 divides 11971 dvdstr 12010 odd2np1lem 12054 ndvdssub 12112 bitsinv1 12144 eucalglt 12250 hashgcdeq 12433 ennnfonelemim 12666 imasaddfnlemg 13016 dfgrp2 13229 grpidinv 13261 dfgrp3mlem 13300 isdomn 13901 xmeteq0 14679 mpodvdsmulf1o 15310 gausslemma2dlem0i 15382 trilpo 15774 trirec0 15775 redcwlpo 15786 redc0 15788 reap0 15789 |
| Copyright terms: Public domain | W3C validator |