ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iserd Unicode version

Theorem iserd 6527
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
iserd.1  |-  ( ph  ->  Rel  R )
iserd.2  |-  ( (
ph  /\  x R
y )  ->  y R x )
iserd.3  |-  ( (
ph  /\  ( x R y  /\  y R z ) )  ->  x R z )
iserd.4  |-  ( ph  ->  ( x  e.  A  <->  x R x ) )
Assertion
Ref Expression
iserd  |-  ( ph  ->  R  Er  A )
Distinct variable groups:    x, y, z, R    x, A    ph, x, y, z
Allowed substitution hints:    A( y, z)

Proof of Theorem iserd
StepHypRef Expression
1 iserd.1 . . 3  |-  ( ph  ->  Rel  R )
2 eqidd 2166 . . 3  |-  ( ph  ->  dom  R  =  dom  R )
3 iserd.2 . . . . . . . 8  |-  ( (
ph  /\  x R
y )  ->  y R x )
43ex 114 . . . . . . 7  |-  ( ph  ->  ( x R y  ->  y R x ) )
5 iserd.3 . . . . . . . 8  |-  ( (
ph  /\  ( x R y  /\  y R z ) )  ->  x R z )
65ex 114 . . . . . . 7  |-  ( ph  ->  ( ( x R y  /\  y R z )  ->  x R z ) )
74, 6jca 304 . . . . . 6  |-  ( ph  ->  ( ( x R y  ->  y R x )  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) )
87alrimiv 1862 . . . . 5  |-  ( ph  ->  A. z ( ( x R y  -> 
y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
98alrimiv 1862 . . . 4  |-  ( ph  ->  A. y A. z
( ( x R y  ->  y R x )  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) )
109alrimiv 1862 . . 3  |-  ( ph  ->  A. x A. y A. z ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
11 dfer2 6502 . . 3  |-  ( R  Er  dom  R  <->  ( Rel  R  /\  dom  R  =  dom  R  /\  A. x A. y A. z
( ( x R y  ->  y R x )  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) ) )
121, 2, 10, 11syl3anbrc 1171 . 2  |-  ( ph  ->  R  Er  dom  R
)
1312adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  e.  dom  R )  ->  R  Er  dom  R )
14 simpr 109 . . . . . . . 8  |-  ( (
ph  /\  x  e.  dom  R )  ->  x  e.  dom  R )
1513, 14erref 6521 . . . . . . 7  |-  ( (
ph  /\  x  e.  dom  R )  ->  x R x )
1615ex 114 . . . . . 6  |-  ( ph  ->  ( x  e.  dom  R  ->  x R x ) )
17 vex 2729 . . . . . . 7  |-  x  e. 
_V
1817, 17breldm 4808 . . . . . 6  |-  ( x R x  ->  x  e.  dom  R )
1916, 18impbid1 141 . . . . 5  |-  ( ph  ->  ( x  e.  dom  R  <-> 
x R x ) )
20 iserd.4 . . . . 5  |-  ( ph  ->  ( x  e.  A  <->  x R x ) )
2119, 20bitr4d 190 . . . 4  |-  ( ph  ->  ( x  e.  dom  R  <-> 
x  e.  A ) )
2221eqrdv 2163 . . 3  |-  ( ph  ->  dom  R  =  A )
23 ereq2 6509 . . 3  |-  ( dom 
R  =  A  -> 
( R  Er  dom  R  <-> 
R  Er  A ) )
2422, 23syl 14 . 2  |-  ( ph  ->  ( R  Er  dom  R  <-> 
R  Er  A ) )
2512, 24mpbid 146 1  |-  ( ph  ->  R  Er  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341    = wceq 1343    e. wcel 2136   class class class wbr 3982   dom cdm 4604   Rel wrel 4609    Er wer 6498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-er 6501
This theorem is referenced by:  swoer  6529  eqer  6533  0er  6535  iinerm  6573  erinxp  6575  ecopover  6599  ecopoverg  6602  ener  6745  enq0er  7376  xmeter  13076
  Copyright terms: Public domain W3C validator