| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iserd | Unicode version | ||
| Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| iserd.1 |
|
| iserd.2 |
|
| iserd.3 |
|
| iserd.4 |
|
| Ref | Expression |
|---|---|
| iserd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iserd.1 |
. . 3
| |
| 2 | eqidd 2205 |
. . 3
| |
| 3 | iserd.2 |
. . . . . . . 8
| |
| 4 | 3 | ex 115 |
. . . . . . 7
|
| 5 | iserd.3 |
. . . . . . . 8
| |
| 6 | 5 | ex 115 |
. . . . . . 7
|
| 7 | 4, 6 | jca 306 |
. . . . . 6
|
| 8 | 7 | alrimiv 1896 |
. . . . 5
|
| 9 | 8 | alrimiv 1896 |
. . . 4
|
| 10 | 9 | alrimiv 1896 |
. . 3
|
| 11 | dfer2 6620 |
. . 3
| |
| 12 | 1, 2, 10, 11 | syl3anbrc 1183 |
. 2
|
| 13 | 12 | adantr 276 |
. . . . . . . 8
|
| 14 | simpr 110 |
. . . . . . . 8
| |
| 15 | 13, 14 | erref 6639 |
. . . . . . 7
|
| 16 | 15 | ex 115 |
. . . . . 6
|
| 17 | vex 2774 |
. . . . . . 7
| |
| 18 | 17, 17 | breldm 4881 |
. . . . . 6
|
| 19 | 16, 18 | impbid1 142 |
. . . . 5
|
| 20 | iserd.4 |
. . . . 5
| |
| 21 | 19, 20 | bitr4d 191 |
. . . 4
|
| 22 | 21 | eqrdv 2202 |
. . 3
|
| 23 | ereq2 6627 |
. . 3
| |
| 24 | 22, 23 | syl 14 |
. 2
|
| 25 | 12, 24 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-er 6619 |
| This theorem is referenced by: swoer 6647 eqer 6651 0er 6653 iinerm 6693 erinxp 6695 ecopover 6719 ecopoverg 6722 ener 6870 enq0er 7547 eqger 13502 xmeter 14850 |
| Copyright terms: Public domain | W3C validator |