ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iserd Unicode version

Theorem iserd 6463
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
iserd.1  |-  ( ph  ->  Rel  R )
iserd.2  |-  ( (
ph  /\  x R
y )  ->  y R x )
iserd.3  |-  ( (
ph  /\  ( x R y  /\  y R z ) )  ->  x R z )
iserd.4  |-  ( ph  ->  ( x  e.  A  <->  x R x ) )
Assertion
Ref Expression
iserd  |-  ( ph  ->  R  Er  A )
Distinct variable groups:    x, y, z, R    x, A    ph, x, y, z
Allowed substitution hints:    A( y, z)

Proof of Theorem iserd
StepHypRef Expression
1 iserd.1 . . 3  |-  ( ph  ->  Rel  R )
2 eqidd 2141 . . 3  |-  ( ph  ->  dom  R  =  dom  R )
3 iserd.2 . . . . . . . 8  |-  ( (
ph  /\  x R
y )  ->  y R x )
43ex 114 . . . . . . 7  |-  ( ph  ->  ( x R y  ->  y R x ) )
5 iserd.3 . . . . . . . 8  |-  ( (
ph  /\  ( x R y  /\  y R z ) )  ->  x R z )
65ex 114 . . . . . . 7  |-  ( ph  ->  ( ( x R y  /\  y R z )  ->  x R z ) )
74, 6jca 304 . . . . . 6  |-  ( ph  ->  ( ( x R y  ->  y R x )  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) )
87alrimiv 1847 . . . . 5  |-  ( ph  ->  A. z ( ( x R y  -> 
y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
98alrimiv 1847 . . . 4  |-  ( ph  ->  A. y A. z
( ( x R y  ->  y R x )  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) )
109alrimiv 1847 . . 3  |-  ( ph  ->  A. x A. y A. z ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
11 dfer2 6438 . . 3  |-  ( R  Er  dom  R  <->  ( Rel  R  /\  dom  R  =  dom  R  /\  A. x A. y A. z
( ( x R y  ->  y R x )  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) ) )
121, 2, 10, 11syl3anbrc 1166 . 2  |-  ( ph  ->  R  Er  dom  R
)
1312adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  e.  dom  R )  ->  R  Er  dom  R )
14 simpr 109 . . . . . . . 8  |-  ( (
ph  /\  x  e.  dom  R )  ->  x  e.  dom  R )
1513, 14erref 6457 . . . . . . 7  |-  ( (
ph  /\  x  e.  dom  R )  ->  x R x )
1615ex 114 . . . . . 6  |-  ( ph  ->  ( x  e.  dom  R  ->  x R x ) )
17 vex 2692 . . . . . . 7  |-  x  e. 
_V
1817, 17breldm 4751 . . . . . 6  |-  ( x R x  ->  x  e.  dom  R )
1916, 18impbid1 141 . . . . 5  |-  ( ph  ->  ( x  e.  dom  R  <-> 
x R x ) )
20 iserd.4 . . . . 5  |-  ( ph  ->  ( x  e.  A  <->  x R x ) )
2119, 20bitr4d 190 . . . 4  |-  ( ph  ->  ( x  e.  dom  R  <-> 
x  e.  A ) )
2221eqrdv 2138 . . 3  |-  ( ph  ->  dom  R  =  A )
23 ereq2 6445 . . 3  |-  ( dom 
R  =  A  -> 
( R  Er  dom  R  <-> 
R  Er  A ) )
2422, 23syl 14 . 2  |-  ( ph  ->  ( R  Er  dom  R  <-> 
R  Er  A ) )
2512, 24mpbid 146 1  |-  ( ph  ->  R  Er  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1330    = wceq 1332    e. wcel 1481   class class class wbr 3937   dom cdm 4547   Rel wrel 4552    Er wer 6434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-er 6437
This theorem is referenced by:  swoer  6465  eqer  6469  0er  6471  iinerm  6509  erinxp  6511  ecopover  6535  ecopoverg  6538  ener  6681  enq0er  7267  xmeter  12644
  Copyright terms: Public domain W3C validator