Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iserd | Unicode version |
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
iserd.1 | |
iserd.2 | |
iserd.3 | |
iserd.4 |
Ref | Expression |
---|---|
iserd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iserd.1 | . . 3 | |
2 | eqidd 2166 | . . 3 | |
3 | iserd.2 | . . . . . . . 8 | |
4 | 3 | ex 114 | . . . . . . 7 |
5 | iserd.3 | . . . . . . . 8 | |
6 | 5 | ex 114 | . . . . . . 7 |
7 | 4, 6 | jca 304 | . . . . . 6 |
8 | 7 | alrimiv 1862 | . . . . 5 |
9 | 8 | alrimiv 1862 | . . . 4 |
10 | 9 | alrimiv 1862 | . . 3 |
11 | dfer2 6502 | . . 3 | |
12 | 1, 2, 10, 11 | syl3anbrc 1171 | . 2 |
13 | 12 | adantr 274 | . . . . . . . 8 |
14 | simpr 109 | . . . . . . . 8 | |
15 | 13, 14 | erref 6521 | . . . . . . 7 |
16 | 15 | ex 114 | . . . . . 6 |
17 | vex 2729 | . . . . . . 7 | |
18 | 17, 17 | breldm 4808 | . . . . . 6 |
19 | 16, 18 | impbid1 141 | . . . . 5 |
20 | iserd.4 | . . . . 5 | |
21 | 19, 20 | bitr4d 190 | . . . 4 |
22 | 21 | eqrdv 2163 | . . 3 |
23 | ereq2 6509 | . . 3 | |
24 | 22, 23 | syl 14 | . 2 |
25 | 12, 24 | mpbid 146 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wcel 2136 class class class wbr 3982 cdm 4604 wrel 4609 wer 6498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-er 6501 |
This theorem is referenced by: swoer 6529 eqer 6533 0er 6535 iinerm 6573 erinxp 6575 ecopover 6599 ecopoverg 6602 ener 6745 enq0er 7376 xmeter 13076 |
Copyright terms: Public domain | W3C validator |