| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iserd | Unicode version | ||
| Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| iserd.1 |
|
| iserd.2 |
|
| iserd.3 |
|
| iserd.4 |
|
| Ref | Expression |
|---|---|
| iserd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iserd.1 |
. . 3
| |
| 2 | eqidd 2197 |
. . 3
| |
| 3 | iserd.2 |
. . . . . . . 8
| |
| 4 | 3 | ex 115 |
. . . . . . 7
|
| 5 | iserd.3 |
. . . . . . . 8
| |
| 6 | 5 | ex 115 |
. . . . . . 7
|
| 7 | 4, 6 | jca 306 |
. . . . . 6
|
| 8 | 7 | alrimiv 1888 |
. . . . 5
|
| 9 | 8 | alrimiv 1888 |
. . . 4
|
| 10 | 9 | alrimiv 1888 |
. . 3
|
| 11 | dfer2 6593 |
. . 3
| |
| 12 | 1, 2, 10, 11 | syl3anbrc 1183 |
. 2
|
| 13 | 12 | adantr 276 |
. . . . . . . 8
|
| 14 | simpr 110 |
. . . . . . . 8
| |
| 15 | 13, 14 | erref 6612 |
. . . . . . 7
|
| 16 | 15 | ex 115 |
. . . . . 6
|
| 17 | vex 2766 |
. . . . . . 7
| |
| 18 | 17, 17 | breldm 4870 |
. . . . . 6
|
| 19 | 16, 18 | impbid1 142 |
. . . . 5
|
| 20 | iserd.4 |
. . . . 5
| |
| 21 | 19, 20 | bitr4d 191 |
. . . 4
|
| 22 | 21 | eqrdv 2194 |
. . 3
|
| 23 | ereq2 6600 |
. . 3
| |
| 24 | 22, 23 | syl 14 |
. 2
|
| 25 | 12, 24 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-er 6592 |
| This theorem is referenced by: swoer 6620 eqer 6624 0er 6626 iinerm 6666 erinxp 6668 ecopover 6692 ecopoverg 6695 ener 6838 enq0er 7502 eqger 13354 xmeter 14672 |
| Copyright terms: Public domain | W3C validator |