Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iserd | Unicode version |
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
iserd.1 | |
iserd.2 | |
iserd.3 | |
iserd.4 |
Ref | Expression |
---|---|
iserd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iserd.1 | . . 3 | |
2 | eqidd 2158 | . . 3 | |
3 | iserd.2 | . . . . . . . 8 | |
4 | 3 | ex 114 | . . . . . . 7 |
5 | iserd.3 | . . . . . . . 8 | |
6 | 5 | ex 114 | . . . . . . 7 |
7 | 4, 6 | jca 304 | . . . . . 6 |
8 | 7 | alrimiv 1854 | . . . . 5 |
9 | 8 | alrimiv 1854 | . . . 4 |
10 | 9 | alrimiv 1854 | . . 3 |
11 | dfer2 6474 | . . 3 | |
12 | 1, 2, 10, 11 | syl3anbrc 1166 | . 2 |
13 | 12 | adantr 274 | . . . . . . . 8 |
14 | simpr 109 | . . . . . . . 8 | |
15 | 13, 14 | erref 6493 | . . . . . . 7 |
16 | 15 | ex 114 | . . . . . 6 |
17 | vex 2715 | . . . . . . 7 | |
18 | 17, 17 | breldm 4787 | . . . . . 6 |
19 | 16, 18 | impbid1 141 | . . . . 5 |
20 | iserd.4 | . . . . 5 | |
21 | 19, 20 | bitr4d 190 | . . . 4 |
22 | 21 | eqrdv 2155 | . . 3 |
23 | ereq2 6481 | . . 3 | |
24 | 22, 23 | syl 14 | . 2 |
25 | 12, 24 | mpbid 146 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1333 wceq 1335 wcel 2128 class class class wbr 3965 cdm 4583 wrel 4588 wer 6470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-er 6473 |
This theorem is referenced by: swoer 6501 eqer 6505 0er 6507 iinerm 6545 erinxp 6547 ecopover 6571 ecopoverg 6574 ener 6717 enq0er 7338 xmeter 12796 |
Copyright terms: Public domain | W3C validator |