Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iserd | Unicode version |
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
iserd.1 | |
iserd.2 | |
iserd.3 | |
iserd.4 |
Ref | Expression |
---|---|
iserd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iserd.1 | . . 3 | |
2 | eqidd 2171 | . . 3 | |
3 | iserd.2 | . . . . . . . 8 | |
4 | 3 | ex 114 | . . . . . . 7 |
5 | iserd.3 | . . . . . . . 8 | |
6 | 5 | ex 114 | . . . . . . 7 |
7 | 4, 6 | jca 304 | . . . . . 6 |
8 | 7 | alrimiv 1867 | . . . . 5 |
9 | 8 | alrimiv 1867 | . . . 4 |
10 | 9 | alrimiv 1867 | . . 3 |
11 | dfer2 6514 | . . 3 | |
12 | 1, 2, 10, 11 | syl3anbrc 1176 | . 2 |
13 | 12 | adantr 274 | . . . . . . . 8 |
14 | simpr 109 | . . . . . . . 8 | |
15 | 13, 14 | erref 6533 | . . . . . . 7 |
16 | 15 | ex 114 | . . . . . 6 |
17 | vex 2733 | . . . . . . 7 | |
18 | 17, 17 | breldm 4815 | . . . . . 6 |
19 | 16, 18 | impbid1 141 | . . . . 5 |
20 | iserd.4 | . . . . 5 | |
21 | 19, 20 | bitr4d 190 | . . . 4 |
22 | 21 | eqrdv 2168 | . . 3 |
23 | ereq2 6521 | . . 3 | |
24 | 22, 23 | syl 14 | . 2 |
25 | 12, 24 | mpbid 146 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wceq 1348 wcel 2141 class class class wbr 3989 cdm 4611 wrel 4616 wer 6510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-er 6513 |
This theorem is referenced by: swoer 6541 eqer 6545 0er 6547 iinerm 6585 erinxp 6587 ecopover 6611 ecopoverg 6614 ener 6757 enq0er 7397 xmeter 13230 |
Copyright terms: Public domain | W3C validator |