| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iserd | Unicode version | ||
| Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| iserd.1 |
|
| iserd.2 |
|
| iserd.3 |
|
| iserd.4 |
|
| Ref | Expression |
|---|---|
| iserd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iserd.1 |
. . 3
| |
| 2 | eqidd 2230 |
. . 3
| |
| 3 | iserd.2 |
. . . . . . . 8
| |
| 4 | 3 | ex 115 |
. . . . . . 7
|
| 5 | iserd.3 |
. . . . . . . 8
| |
| 6 | 5 | ex 115 |
. . . . . . 7
|
| 7 | 4, 6 | jca 306 |
. . . . . 6
|
| 8 | 7 | alrimiv 1920 |
. . . . 5
|
| 9 | 8 | alrimiv 1920 |
. . . 4
|
| 10 | 9 | alrimiv 1920 |
. . 3
|
| 11 | dfer2 6679 |
. . 3
| |
| 12 | 1, 2, 10, 11 | syl3anbrc 1205 |
. 2
|
| 13 | 12 | adantr 276 |
. . . . . . . 8
|
| 14 | simpr 110 |
. . . . . . . 8
| |
| 15 | 13, 14 | erref 6698 |
. . . . . . 7
|
| 16 | 15 | ex 115 |
. . . . . 6
|
| 17 | vex 2802 |
. . . . . . 7
| |
| 18 | 17, 17 | breldm 4926 |
. . . . . 6
|
| 19 | 16, 18 | impbid1 142 |
. . . . 5
|
| 20 | iserd.4 |
. . . . 5
| |
| 21 | 19, 20 | bitr4d 191 |
. . . 4
|
| 22 | 21 | eqrdv 2227 |
. . 3
|
| 23 | ereq2 6686 |
. . 3
| |
| 24 | 22, 23 | syl 14 |
. 2
|
| 25 | 12, 24 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-er 6678 |
| This theorem is referenced by: swoer 6706 eqer 6710 0er 6712 iinerm 6752 erinxp 6754 ecopover 6778 ecopoverg 6781 ener 6929 enq0er 7618 eqger 13756 xmeter 15104 |
| Copyright terms: Public domain | W3C validator |