ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneu Unicode version

Theorem fneu 5222
Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fneu  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  E! y  B F y )
Distinct variable groups:    y, F    y, B
Allowed substitution hint:    A( y)

Proof of Theorem fneu
StepHypRef Expression
1 funmo 5133 . . . 4  |-  ( Fun 
F  ->  E* y  B F y )
21adantr 274 . . 3  |-  ( ( Fun  F  /\  B  e.  dom  F )  ->  E* y  B F
y )
3 eldmg 4729 . . . . . 6  |-  ( B  e.  dom  F  -> 
( B  e.  dom  F  <->  E. y  B F
y ) )
43ibi 175 . . . . 5  |-  ( B  e.  dom  F  ->  E. y  B F
y )
54adantl 275 . . . 4  |-  ( ( Fun  F  /\  B  e.  dom  F )  ->  E. y  B F
y )
6 exmoeu2 2045 . . . 4  |-  ( E. y  B F y  ->  ( E* y  B F y  <->  E! y  B F y ) )
75, 6syl 14 . . 3  |-  ( ( Fun  F  /\  B  e.  dom  F )  -> 
( E* y  B F y  <->  E! y  B F y ) )
82, 7mpbid 146 . 2  |-  ( ( Fun  F  /\  B  e.  dom  F )  ->  E! y  B F
y )
98funfni 5218 1  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  E! y  B F y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   E.wex 1468    e. wcel 1480   E!weu 1997   E*wmo 1998   class class class wbr 3924   dom cdm 4534   Fun wfun 5112    Fn wfn 5113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-fun 5120  df-fn 5121
This theorem is referenced by:  fneu2  5223  fnbrfvb  5455  mapsn  6577
  Copyright terms: Public domain W3C validator