ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneu Unicode version

Theorem fneu 5427
Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fneu  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  E! y  B F y )
Distinct variable groups:    y, F    y, B
Allowed substitution hint:    A( y)

Proof of Theorem fneu
StepHypRef Expression
1 funmo 5333 . . . 4  |-  ( Fun 
F  ->  E* y  B F y )
21adantr 276 . . 3  |-  ( ( Fun  F  /\  B  e.  dom  F )  ->  E* y  B F
y )
3 eldmg 4918 . . . . . 6  |-  ( B  e.  dom  F  -> 
( B  e.  dom  F  <->  E. y  B F
y ) )
43ibi 176 . . . . 5  |-  ( B  e.  dom  F  ->  E. y  B F
y )
54adantl 277 . . . 4  |-  ( ( Fun  F  /\  B  e.  dom  F )  ->  E. y  B F
y )
6 exmoeu2 2126 . . . 4  |-  ( E. y  B F y  ->  ( E* y  B F y  <->  E! y  B F y ) )
75, 6syl 14 . . 3  |-  ( ( Fun  F  /\  B  e.  dom  F )  -> 
( E* y  B F y  <->  E! y  B F y ) )
82, 7mpbid 147 . 2  |-  ( ( Fun  F  /\  B  e.  dom  F )  ->  E! y  B F
y )
98funfni 5423 1  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  E! y  B F y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1538   E!weu 2077   E*wmo 2078    e. wcel 2200   class class class wbr 4083   dom cdm 4719   Fun wfun 5312    Fn wfn 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-fun 5320  df-fn 5321
This theorem is referenced by:  fneu2  5428  fnbrfvb  5672  mapsn  6837
  Copyright terms: Public domain W3C validator