ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneu Unicode version

Theorem fneu 5118
Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fneu  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  E! y  B F y )
Distinct variable groups:    y, F    y, B
Allowed substitution hint:    A( y)

Proof of Theorem fneu
StepHypRef Expression
1 funmo 5030 . . . 4  |-  ( Fun 
F  ->  E* y  B F y )
21adantr 270 . . 3  |-  ( ( Fun  F  /\  B  e.  dom  F )  ->  E* y  B F
y )
3 eldmg 4631 . . . . . 6  |-  ( B  e.  dom  F  -> 
( B  e.  dom  F  <->  E. y  B F
y ) )
43ibi 174 . . . . 5  |-  ( B  e.  dom  F  ->  E. y  B F
y )
54adantl 271 . . . 4  |-  ( ( Fun  F  /\  B  e.  dom  F )  ->  E. y  B F
y )
6 exmoeu2 1996 . . . 4  |-  ( E. y  B F y  ->  ( E* y  B F y  <->  E! y  B F y ) )
75, 6syl 14 . . 3  |-  ( ( Fun  F  /\  B  e.  dom  F )  -> 
( E* y  B F y  <->  E! y  B F y ) )
82, 7mpbid 145 . 2  |-  ( ( Fun  F  /\  B  e.  dom  F )  ->  E! y  B F
y )
98funfni 5114 1  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  E! y  B F y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   E.wex 1426    e. wcel 1438   E!weu 1948   E*wmo 1949   class class class wbr 3845   dom cdm 4438   Fun wfun 5009    Fn wfn 5010
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-fun 5017  df-fn 5018
This theorem is referenced by:  fneu2  5119  fnbrfvb  5345  mapsn  6445
  Copyright terms: Public domain W3C validator