ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nff1o Unicode version

Theorem nff1o 5502
Description: Bound-variable hypothesis builder for a one-to-one onto function. (Contributed by NM, 16-May-2004.)
Hypotheses
Ref Expression
nff1o.1  |-  F/_ x F
nff1o.2  |-  F/_ x A
nff1o.3  |-  F/_ x B
Assertion
Ref Expression
nff1o  |-  F/ x  F : A -1-1-onto-> B

Proof of Theorem nff1o
StepHypRef Expression
1 df-f1o 5265 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
2 nff1o.1 . . . 4  |-  F/_ x F
3 nff1o.2 . . . 4  |-  F/_ x A
4 nff1o.3 . . . 4  |-  F/_ x B
52, 3, 4nff1 5461 . . 3  |-  F/ x  F : A -1-1-> B
62, 3, 4nffo 5479 . . 3  |-  F/ x  F : A -onto-> B
75, 6nfan 1579 . 2  |-  F/ x
( F : A -1-1-> B  /\  F : A -onto-> B )
81, 7nfxfr 1488 1  |-  F/ x  F : A -1-1-onto-> B
Colors of variables: wff set class
Syntax hints:    /\ wa 104   F/wnf 1474   F/_wnfc 2326   -1-1->wf1 5255   -onto->wfo 5256   -1-1-onto->wf1o 5257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265
This theorem is referenced by:  nfiso  5853  nfsum1  11521  nfsum  11522  nfcprod1  11719  nfcprod  11720
  Copyright terms: Public domain W3C validator