ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nff1o Unicode version

Theorem nff1o 5498
Description: Bound-variable hypothesis builder for a one-to-one onto function. (Contributed by NM, 16-May-2004.)
Hypotheses
Ref Expression
nff1o.1  |-  F/_ x F
nff1o.2  |-  F/_ x A
nff1o.3  |-  F/_ x B
Assertion
Ref Expression
nff1o  |-  F/ x  F : A -1-1-onto-> B

Proof of Theorem nff1o
StepHypRef Expression
1 df-f1o 5261 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
2 nff1o.1 . . . 4  |-  F/_ x F
3 nff1o.2 . . . 4  |-  F/_ x A
4 nff1o.3 . . . 4  |-  F/_ x B
52, 3, 4nff1 5457 . . 3  |-  F/ x  F : A -1-1-> B
62, 3, 4nffo 5475 . . 3  |-  F/ x  F : A -onto-> B
75, 6nfan 1576 . 2  |-  F/ x
( F : A -1-1-> B  /\  F : A -onto-> B )
81, 7nfxfr 1485 1  |-  F/ x  F : A -1-1-onto-> B
Colors of variables: wff set class
Syntax hints:    /\ wa 104   F/wnf 1471   F/_wnfc 2323   -1-1->wf1 5251   -onto->wfo 5252   -1-1-onto->wf1o 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261
This theorem is referenced by:  nfiso  5849  nfsum1  11499  nfsum  11500  nfcprod1  11697  nfcprod  11698
  Copyright terms: Public domain W3C validator