ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodcnv Unicode version

Theorem fprodcnv 11936
Description: Transform a product region using the converse operation. (Contributed by Scott Fenton, 1-Feb-2018.)
Hypotheses
Ref Expression
fprodcnv.1  |-  ( x  =  <. j ,  k
>.  ->  B  =  D )
fprodcnv.2  |-  ( y  =  <. k ,  j
>.  ->  C  =  D )
fprodcnv.3  |-  ( ph  ->  A  e.  Fin )
fprodcnv.4  |-  ( ph  ->  Rel  A )
fprodcnv.5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
fprodcnv  |-  ( ph  ->  prod_ x  e.  A  B  =  prod_ y  e.  `'  A C )
Distinct variable groups:    x, A, y    B, j, k, y    C, j, k    x, D, y   
j, k, x, y    ph, x, y
Allowed substitution hints:    ph( j, k)    A( j, k)    B( x)    C( x, y)    D( j, k)

Proof of Theorem fprodcnv
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 csbeq1a 3102 . . . 4  |-  ( x  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >.  ->  B  =  [_ <. ( 2nd `  y
) ,  ( 1st `  y ) >.  /  x ]_ B )
2 2ndexg 6254 . . . . . 6  |-  ( y  e.  _V  ->  ( 2nd `  y )  e. 
_V )
32elv 2776 . . . . 5  |-  ( 2nd `  y )  e.  _V
4 1stexg 6253 . . . . . 6  |-  ( y  e.  _V  ->  ( 1st `  y )  e. 
_V )
54elv 2776 . . . . 5  |-  ( 1st `  y )  e.  _V
6 vex 2775 . . . . . . . 8  |-  j  e. 
_V
7 vex 2775 . . . . . . . 8  |-  k  e. 
_V
86, 7opex 4273 . . . . . . 7  |-  <. j ,  k >.  e.  _V
9 fprodcnv.1 . . . . . . 7  |-  ( x  =  <. j ,  k
>.  ->  B  =  D )
108, 9csbie 3139 . . . . . 6  |-  [_ <. j ,  k >.  /  x ]_ B  =  D
11 opeq12 3821 . . . . . . 7  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  <. j ,  k >.  =  <. ( 2nd `  y ) ,  ( 1st `  y
) >. )
1211csbeq1d 3100 . . . . . 6  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  [_ <. j ,  k >.  /  x ]_ B  =  [_ <. ( 2nd `  y ) ,  ( 1st `  y
) >.  /  x ]_ B )
1310, 12eqtr3id 2252 . . . . 5  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  D  =  [_ <. ( 2nd `  y
) ,  ( 1st `  y ) >.  /  x ]_ B )
143, 5, 13csbie2 3143 . . . 4  |-  [_ ( 2nd `  y )  / 
j ]_ [_ ( 1st `  y )  /  k ]_ D  =  [_ <. ( 2nd `  y ) ,  ( 1st `  y
) >.  /  x ]_ B
151, 14eqtr4di 2256 . . 3  |-  ( x  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >.  ->  B  =  [_ ( 2nd `  y
)  /  j ]_ [_ ( 1st `  y
)  /  k ]_ D )
16 fprodcnv.4 . . . 4  |-  ( ph  ->  Rel  A )
17 fprodcnv.3 . . . 4  |-  ( ph  ->  A  e.  Fin )
18 relcnvfi 7043 . . . 4  |-  ( ( Rel  A  /\  A  e.  Fin )  ->  `' A  e.  Fin )
1916, 17, 18syl2anc 411 . . 3  |-  ( ph  ->  `' A  e.  Fin )
20 relcnv 5060 . . . . 5  |-  Rel  `' A
21 cnvf1o 6311 . . . . 5  |-  ( Rel  `' A  ->  ( z  e.  `' A  |->  U. `' { z } ) : `' A -1-1-onto-> `' `' A )
2220, 21ax-mp 5 . . . 4  |-  ( z  e.  `' A  |->  U. `' { z } ) : `' A -1-1-onto-> `' `' A
23 dfrel2 5133 . . . . . 6  |-  ( Rel 
A  <->  `' `' A  =  A
)
2416, 23sylib 122 . . . . 5  |-  ( ph  ->  `' `' A  =  A
)
2524f1oeq3d 5519 . . . 4  |-  ( ph  ->  ( ( z  e.  `' A  |->  U. `' { z } ) : `' A -1-1-onto-> `' `' A 
<->  ( z  e.  `' A  |->  U. `' { z } ) : `' A
-1-1-onto-> A ) )
2622, 25mpbii 148 . . 3  |-  ( ph  ->  ( z  e.  `' A  |->  U. `' { z } ) : `' A
-1-1-onto-> A )
27 1st2nd 6267 . . . . . . 7  |-  ( ( Rel  `' A  /\  y  e.  `' A
)  ->  y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
2820, 27mpan 424 . . . . . 6  |-  ( y  e.  `' A  -> 
y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
2928fveq2d 5580 . . . . 5  |-  ( y  e.  `' A  -> 
( ( z  e.  `' A  |->  U. `' { z } ) `
 y )  =  ( ( z  e.  `' A  |->  U. `' { z } ) `
 <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
)
3028eleq1d 2274 . . . . . . 7  |-  ( y  e.  `' A  -> 
( y  e.  `' A 
<-> 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  `' A ) )
3130ibi 176 . . . . . 6  |-  ( y  e.  `' A  ->  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  `' A )
32 sneq 3644 . . . . . . . . . 10  |-  ( z  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  ->  { z }  =  { <. ( 1st `  y ) ,  ( 2nd `  y
) >. } )
3332cnveqd 4854 . . . . . . . . 9  |-  ( z  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  ->  `' { z }  =  `' { <. ( 1st `  y
) ,  ( 2nd `  y ) >. } )
3433unieqd 3861 . . . . . . . 8  |-  ( z  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  ->  U. `' { z }  =  U. `' { <. ( 1st `  y
) ,  ( 2nd `  y ) >. } )
35 opswapg 5169 . . . . . . . . 9  |-  ( ( ( 1st `  y
)  e.  _V  /\  ( 2nd `  y )  e.  _V )  ->  U. `' { <. ( 1st `  y
) ,  ( 2nd `  y ) >. }  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >. )
365, 3, 35mp2an 426 . . . . . . . 8  |-  U. `' { <. ( 1st `  y
) ,  ( 2nd `  y ) >. }  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >.
3734, 36eqtrdi 2254 . . . . . . 7  |-  ( z  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  ->  U. `' { z }  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >. )
38 eqid 2205 . . . . . . 7  |-  ( z  e.  `' A  |->  U. `' { z } )  =  ( z  e.  `' A  |->  U. `' { z } )
393, 5opex 4273 . . . . . . 7  |-  <. ( 2nd `  y ) ,  ( 1st `  y
) >.  e.  _V
4037, 38, 39fvmpt 5656 . . . . . 6  |-  ( <.
( 1st `  y
) ,  ( 2nd `  y ) >.  e.  `' A  ->  ( ( z  e.  `' A  |->  U. `' { z } ) `
 <. ( 1st `  y
) ,  ( 2nd `  y ) >. )  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >. )
4131, 40syl 14 . . . . 5  |-  ( y  e.  `' A  -> 
( ( z  e.  `' A  |->  U. `' { z } ) `
 <. ( 1st `  y
) ,  ( 2nd `  y ) >. )  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >. )
4229, 41eqtrd 2238 . . . 4  |-  ( y  e.  `' A  -> 
( ( z  e.  `' A  |->  U. `' { z } ) `
 y )  = 
<. ( 2nd `  y
) ,  ( 1st `  y ) >. )
4342adantl 277 . . 3  |-  ( (
ph  /\  y  e.  `' A )  ->  (
( z  e.  `' A  |->  U. `' { z } ) `  y
)  =  <. ( 2nd `  y ) ,  ( 1st `  y
) >. )
44 fprodcnv.5 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
4515, 19, 26, 43, 44fprodf1o 11899 . 2  |-  ( ph  ->  prod_ x  e.  A  B  =  prod_ y  e.  `'  A [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y
)  /  k ]_ D )
46 csbeq1a 3102 . . . . 5  |-  ( y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  ->  C  =  [_ <. ( 1st `  y
) ,  ( 2nd `  y ) >.  /  y ]_ C )
4728, 46syl 14 . . . 4  |-  ( y  e.  `' A  ->  C  =  [_ <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /  y ]_ C )
487, 6opex 4273 . . . . . . 7  |-  <. k ,  j >.  e.  _V
49 fprodcnv.2 . . . . . . 7  |-  ( y  =  <. k ,  j
>.  ->  C  =  D )
5048, 49csbie 3139 . . . . . 6  |-  [_ <. k ,  j >.  /  y ]_ C  =  D
51 opeq12 3821 . . . . . . . 8  |-  ( ( k  =  ( 1st `  y )  /\  j  =  ( 2nd `  y
) )  ->  <. k ,  j >.  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
5251ancoms 268 . . . . . . 7  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  <. k ,  j >.  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
5352csbeq1d 3100 . . . . . 6  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  [_ <. k ,  j >.  /  y ]_ C  =  [_ <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /  y ]_ C )
5450, 53eqtr3id 2252 . . . . 5  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  D  =  [_ <. ( 1st `  y
) ,  ( 2nd `  y ) >.  /  y ]_ C )
553, 5, 54csbie2 3143 . . . 4  |-  [_ ( 2nd `  y )  / 
j ]_ [_ ( 1st `  y )  /  k ]_ D  =  [_ <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /  y ]_ C
5647, 55eqtr4di 2256 . . 3  |-  ( y  e.  `' A  ->  C  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y
)  /  k ]_ D )
5756prodeq2i 11873 . 2  |-  prod_ y  e.  `'  A C  =  prod_ y  e.  `'  A [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y )  / 
k ]_ D
5845, 57eqtr4di 2256 1  |-  ( ph  ->  prod_ x  e.  A  B  =  prod_ y  e.  `'  A C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   _Vcvv 2772   [_csb 3093   {csn 3633   <.cop 3636   U.cuni 3850    |-> cmpt 4105   `'ccnv 4674   Rel wrel 4680   -1-1-onto->wf1o 5270   ` cfv 5271   1stc1st 6224   2ndc2nd 6225   Fincfn 6827   CCcc 7923   prod_cprod 11861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-ihash 10921  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-proddc 11862
This theorem is referenced by:  fprodcom2fi  11937
  Copyright terms: Public domain W3C validator