ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodcnv Unicode version

Theorem fprodcnv 12051
Description: Transform a product region using the converse operation. (Contributed by Scott Fenton, 1-Feb-2018.)
Hypotheses
Ref Expression
fprodcnv.1  |-  ( x  =  <. j ,  k
>.  ->  B  =  D )
fprodcnv.2  |-  ( y  =  <. k ,  j
>.  ->  C  =  D )
fprodcnv.3  |-  ( ph  ->  A  e.  Fin )
fprodcnv.4  |-  ( ph  ->  Rel  A )
fprodcnv.5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
fprodcnv  |-  ( ph  ->  prod_ x  e.  A  B  =  prod_ y  e.  `'  A C )
Distinct variable groups:    x, A, y    B, j, k, y    C, j, k    x, D, y   
j, k, x, y    ph, x, y
Allowed substitution hints:    ph( j, k)    A( j, k)    B( x)    C( x, y)    D( j, k)

Proof of Theorem fprodcnv
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 csbeq1a 3110 . . . 4  |-  ( x  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >.  ->  B  =  [_ <. ( 2nd `  y
) ,  ( 1st `  y ) >.  /  x ]_ B )
2 2ndexg 6277 . . . . . 6  |-  ( y  e.  _V  ->  ( 2nd `  y )  e. 
_V )
32elv 2780 . . . . 5  |-  ( 2nd `  y )  e.  _V
4 1stexg 6276 . . . . . 6  |-  ( y  e.  _V  ->  ( 1st `  y )  e. 
_V )
54elv 2780 . . . . 5  |-  ( 1st `  y )  e.  _V
6 vex 2779 . . . . . . . 8  |-  j  e. 
_V
7 vex 2779 . . . . . . . 8  |-  k  e. 
_V
86, 7opex 4291 . . . . . . 7  |-  <. j ,  k >.  e.  _V
9 fprodcnv.1 . . . . . . 7  |-  ( x  =  <. j ,  k
>.  ->  B  =  D )
108, 9csbie 3147 . . . . . 6  |-  [_ <. j ,  k >.  /  x ]_ B  =  D
11 opeq12 3835 . . . . . . 7  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  <. j ,  k >.  =  <. ( 2nd `  y ) ,  ( 1st `  y
) >. )
1211csbeq1d 3108 . . . . . 6  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  [_ <. j ,  k >.  /  x ]_ B  =  [_ <. ( 2nd `  y ) ,  ( 1st `  y
) >.  /  x ]_ B )
1310, 12eqtr3id 2254 . . . . 5  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  D  =  [_ <. ( 2nd `  y
) ,  ( 1st `  y ) >.  /  x ]_ B )
143, 5, 13csbie2 3151 . . . 4  |-  [_ ( 2nd `  y )  / 
j ]_ [_ ( 1st `  y )  /  k ]_ D  =  [_ <. ( 2nd `  y ) ,  ( 1st `  y
) >.  /  x ]_ B
151, 14eqtr4di 2258 . . 3  |-  ( x  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >.  ->  B  =  [_ ( 2nd `  y
)  /  j ]_ [_ ( 1st `  y
)  /  k ]_ D )
16 fprodcnv.4 . . . 4  |-  ( ph  ->  Rel  A )
17 fprodcnv.3 . . . 4  |-  ( ph  ->  A  e.  Fin )
18 relcnvfi 7069 . . . 4  |-  ( ( Rel  A  /\  A  e.  Fin )  ->  `' A  e.  Fin )
1916, 17, 18syl2anc 411 . . 3  |-  ( ph  ->  `' A  e.  Fin )
20 relcnv 5079 . . . . 5  |-  Rel  `' A
21 cnvf1o 6334 . . . . 5  |-  ( Rel  `' A  ->  ( z  e.  `' A  |->  U. `' { z } ) : `' A -1-1-onto-> `' `' A )
2220, 21ax-mp 5 . . . 4  |-  ( z  e.  `' A  |->  U. `' { z } ) : `' A -1-1-onto-> `' `' A
23 dfrel2 5152 . . . . . 6  |-  ( Rel 
A  <->  `' `' A  =  A
)
2416, 23sylib 122 . . . . 5  |-  ( ph  ->  `' `' A  =  A
)
2524f1oeq3d 5541 . . . 4  |-  ( ph  ->  ( ( z  e.  `' A  |->  U. `' { z } ) : `' A -1-1-onto-> `' `' A 
<->  ( z  e.  `' A  |->  U. `' { z } ) : `' A
-1-1-onto-> A ) )
2622, 25mpbii 148 . . 3  |-  ( ph  ->  ( z  e.  `' A  |->  U. `' { z } ) : `' A
-1-1-onto-> A )
27 1st2nd 6290 . . . . . . 7  |-  ( ( Rel  `' A  /\  y  e.  `' A
)  ->  y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
2820, 27mpan 424 . . . . . 6  |-  ( y  e.  `' A  -> 
y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
2928fveq2d 5603 . . . . 5  |-  ( y  e.  `' A  -> 
( ( z  e.  `' A  |->  U. `' { z } ) `
 y )  =  ( ( z  e.  `' A  |->  U. `' { z } ) `
 <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
)
3028eleq1d 2276 . . . . . . 7  |-  ( y  e.  `' A  -> 
( y  e.  `' A 
<-> 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  `' A ) )
3130ibi 176 . . . . . 6  |-  ( y  e.  `' A  ->  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  `' A )
32 sneq 3654 . . . . . . . . . 10  |-  ( z  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  ->  { z }  =  { <. ( 1st `  y ) ,  ( 2nd `  y
) >. } )
3332cnveqd 4872 . . . . . . . . 9  |-  ( z  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  ->  `' { z }  =  `' { <. ( 1st `  y
) ,  ( 2nd `  y ) >. } )
3433unieqd 3875 . . . . . . . 8  |-  ( z  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  ->  U. `' { z }  =  U. `' { <. ( 1st `  y
) ,  ( 2nd `  y ) >. } )
35 opswapg 5188 . . . . . . . . 9  |-  ( ( ( 1st `  y
)  e.  _V  /\  ( 2nd `  y )  e.  _V )  ->  U. `' { <. ( 1st `  y
) ,  ( 2nd `  y ) >. }  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >. )
365, 3, 35mp2an 426 . . . . . . . 8  |-  U. `' { <. ( 1st `  y
) ,  ( 2nd `  y ) >. }  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >.
3734, 36eqtrdi 2256 . . . . . . 7  |-  ( z  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  ->  U. `' { z }  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >. )
38 eqid 2207 . . . . . . 7  |-  ( z  e.  `' A  |->  U. `' { z } )  =  ( z  e.  `' A  |->  U. `' { z } )
393, 5opex 4291 . . . . . . 7  |-  <. ( 2nd `  y ) ,  ( 1st `  y
) >.  e.  _V
4037, 38, 39fvmpt 5679 . . . . . 6  |-  ( <.
( 1st `  y
) ,  ( 2nd `  y ) >.  e.  `' A  ->  ( ( z  e.  `' A  |->  U. `' { z } ) `
 <. ( 1st `  y
) ,  ( 2nd `  y ) >. )  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >. )
4131, 40syl 14 . . . . 5  |-  ( y  e.  `' A  -> 
( ( z  e.  `' A  |->  U. `' { z } ) `
 <. ( 1st `  y
) ,  ( 2nd `  y ) >. )  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >. )
4229, 41eqtrd 2240 . . . 4  |-  ( y  e.  `' A  -> 
( ( z  e.  `' A  |->  U. `' { z } ) `
 y )  = 
<. ( 2nd `  y
) ,  ( 1st `  y ) >. )
4342adantl 277 . . 3  |-  ( (
ph  /\  y  e.  `' A )  ->  (
( z  e.  `' A  |->  U. `' { z } ) `  y
)  =  <. ( 2nd `  y ) ,  ( 1st `  y
) >. )
44 fprodcnv.5 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
4515, 19, 26, 43, 44fprodf1o 12014 . 2  |-  ( ph  ->  prod_ x  e.  A  B  =  prod_ y  e.  `'  A [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y
)  /  k ]_ D )
46 csbeq1a 3110 . . . . 5  |-  ( y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  ->  C  =  [_ <. ( 1st `  y
) ,  ( 2nd `  y ) >.  /  y ]_ C )
4728, 46syl 14 . . . 4  |-  ( y  e.  `' A  ->  C  =  [_ <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /  y ]_ C )
487, 6opex 4291 . . . . . . 7  |-  <. k ,  j >.  e.  _V
49 fprodcnv.2 . . . . . . 7  |-  ( y  =  <. k ,  j
>.  ->  C  =  D )
5048, 49csbie 3147 . . . . . 6  |-  [_ <. k ,  j >.  /  y ]_ C  =  D
51 opeq12 3835 . . . . . . . 8  |-  ( ( k  =  ( 1st `  y )  /\  j  =  ( 2nd `  y
) )  ->  <. k ,  j >.  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
5251ancoms 268 . . . . . . 7  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  <. k ,  j >.  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
5352csbeq1d 3108 . . . . . 6  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  [_ <. k ,  j >.  /  y ]_ C  =  [_ <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /  y ]_ C )
5450, 53eqtr3id 2254 . . . . 5  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  D  =  [_ <. ( 1st `  y
) ,  ( 2nd `  y ) >.  /  y ]_ C )
553, 5, 54csbie2 3151 . . . 4  |-  [_ ( 2nd `  y )  / 
j ]_ [_ ( 1st `  y )  /  k ]_ D  =  [_ <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /  y ]_ C
5647, 55eqtr4di 2258 . . 3  |-  ( y  e.  `' A  ->  C  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y
)  /  k ]_ D )
5756prodeq2i 11988 . 2  |-  prod_ y  e.  `'  A C  =  prod_ y  e.  `'  A [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y )  / 
k ]_ D
5845, 57eqtr4di 2258 1  |-  ( ph  ->  prod_ x  e.  A  B  =  prod_ y  e.  `'  A C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776   [_csb 3101   {csn 3643   <.cop 3646   U.cuni 3864    |-> cmpt 4121   `'ccnv 4692   Rel wrel 4698   -1-1-onto->wf1o 5289   ` cfv 5290   1stc1st 6247   2ndc2nd 6248   Fincfn 6850   CCcc 7958   prod_cprod 11976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-proddc 11977
This theorem is referenced by:  fprodcom2fi  12052
  Copyright terms: Public domain W3C validator