| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fprodcnv | Unicode version | ||
| Description: Transform a product region using the converse operation. (Contributed by Scott Fenton, 1-Feb-2018.) |
| Ref | Expression |
|---|---|
| fprodcnv.1 |
|
| fprodcnv.2 |
|
| fprodcnv.3 |
|
| fprodcnv.4 |
|
| fprodcnv.5 |
|
| Ref | Expression |
|---|---|
| fprodcnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1a 3093 |
. . . 4
| |
| 2 | 2ndexg 6228 |
. . . . . 6
| |
| 3 | 2 | elv 2767 |
. . . . 5
|
| 4 | 1stexg 6227 |
. . . . . 6
| |
| 5 | 4 | elv 2767 |
. . . . 5
|
| 6 | vex 2766 |
. . . . . . . 8
| |
| 7 | vex 2766 |
. . . . . . . 8
| |
| 8 | 6, 7 | opex 4263 |
. . . . . . 7
|
| 9 | fprodcnv.1 |
. . . . . . 7
| |
| 10 | 8, 9 | csbie 3130 |
. . . . . 6
|
| 11 | opeq12 3811 |
. . . . . . 7
| |
| 12 | 11 | csbeq1d 3091 |
. . . . . 6
|
| 13 | 10, 12 | eqtr3id 2243 |
. . . . 5
|
| 14 | 3, 5, 13 | csbie2 3134 |
. . . 4
|
| 15 | 1, 14 | eqtr4di 2247 |
. . 3
|
| 16 | fprodcnv.4 |
. . . 4
| |
| 17 | fprodcnv.3 |
. . . 4
| |
| 18 | relcnvfi 7009 |
. . . 4
| |
| 19 | 16, 17, 18 | syl2anc 411 |
. . 3
|
| 20 | relcnv 5048 |
. . . . 5
| |
| 21 | cnvf1o 6285 |
. . . . 5
| |
| 22 | 20, 21 | ax-mp 5 |
. . . 4
|
| 23 | dfrel2 5121 |
. . . . . 6
| |
| 24 | 16, 23 | sylib 122 |
. . . . 5
|
| 25 | 24 | f1oeq3d 5502 |
. . . 4
|
| 26 | 22, 25 | mpbii 148 |
. . 3
|
| 27 | 1st2nd 6241 |
. . . . . . 7
| |
| 28 | 20, 27 | mpan 424 |
. . . . . 6
|
| 29 | 28 | fveq2d 5563 |
. . . . 5
|
| 30 | 28 | eleq1d 2265 |
. . . . . . 7
|
| 31 | 30 | ibi 176 |
. . . . . 6
|
| 32 | sneq 3634 |
. . . . . . . . . 10
| |
| 33 | 32 | cnveqd 4843 |
. . . . . . . . 9
|
| 34 | 33 | unieqd 3851 |
. . . . . . . 8
|
| 35 | opswapg 5157 |
. . . . . . . . 9
| |
| 36 | 5, 3, 35 | mp2an 426 |
. . . . . . . 8
|
| 37 | 34, 36 | eqtrdi 2245 |
. . . . . . 7
|
| 38 | eqid 2196 |
. . . . . . 7
| |
| 39 | 3, 5 | opex 4263 |
. . . . . . 7
|
| 40 | 37, 38, 39 | fvmpt 5639 |
. . . . . 6
|
| 41 | 31, 40 | syl 14 |
. . . . 5
|
| 42 | 29, 41 | eqtrd 2229 |
. . . 4
|
| 43 | 42 | adantl 277 |
. . 3
|
| 44 | fprodcnv.5 |
. . 3
| |
| 45 | 15, 19, 26, 43, 44 | fprodf1o 11756 |
. 2
|
| 46 | csbeq1a 3093 |
. . . . 5
| |
| 47 | 28, 46 | syl 14 |
. . . 4
|
| 48 | 7, 6 | opex 4263 |
. . . . . . 7
|
| 49 | fprodcnv.2 |
. . . . . . 7
| |
| 50 | 48, 49 | csbie 3130 |
. . . . . 6
|
| 51 | opeq12 3811 |
. . . . . . . 8
| |
| 52 | 51 | ancoms 268 |
. . . . . . 7
|
| 53 | 52 | csbeq1d 3091 |
. . . . . 6
|
| 54 | 50, 53 | eqtr3id 2243 |
. . . . 5
|
| 55 | 3, 5, 54 | csbie2 3134 |
. . . 4
|
| 56 | 47, 55 | eqtr4di 2247 |
. . 3
|
| 57 | 56 | prodeq2i 11730 |
. 2
|
| 58 | 45, 57 | eqtr4di 2247 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-mulrcl 7981 ax-addcom 7982 ax-mulcom 7983 ax-addass 7984 ax-mulass 7985 ax-distr 7986 ax-i2m1 7987 ax-0lt1 7988 ax-1rid 7989 ax-0id 7990 ax-rnegex 7991 ax-precex 7992 ax-cnre 7993 ax-pre-ltirr 7994 ax-pre-ltwlin 7995 ax-pre-lttrn 7996 ax-pre-apti 7997 ax-pre-ltadd 7998 ax-pre-mulgt0 7999 ax-pre-mulext 8000 ax-arch 8001 ax-caucvg 8002 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6200 df-2nd 6201 df-recs 6365 df-irdg 6430 df-frec 6451 df-1o 6476 df-oadd 6480 df-er 6594 df-en 6802 df-dom 6803 df-fin 6804 df-pnf 8066 df-mnf 8067 df-xr 8068 df-ltxr 8069 df-le 8070 df-sub 8202 df-neg 8203 df-reap 8605 df-ap 8612 df-div 8703 df-inn 8994 df-2 9052 df-3 9053 df-4 9054 df-n0 9253 df-z 9330 df-uz 9605 df-q 9697 df-rp 9732 df-fz 10087 df-fzo 10221 df-seqfrec 10543 df-exp 10634 df-ihash 10871 df-cj 11010 df-re 11011 df-im 11012 df-rsqrt 11166 df-abs 11167 df-clim 11447 df-proddc 11719 |
| This theorem is referenced by: fprodcom2fi 11794 |
| Copyright terms: Public domain | W3C validator |