ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq1d Unicode version

Theorem feq1d 5324
Description: Equality deduction for functions. (Contributed by NM, 19-Feb-2008.)
Hypothesis
Ref Expression
feq1d.1  |-  ( ph  ->  F  =  G )
Assertion
Ref Expression
feq1d  |-  ( ph  ->  ( F : A --> B 
<->  G : A --> B ) )

Proof of Theorem feq1d
StepHypRef Expression
1 feq1d.1 . 2  |-  ( ph  ->  F  =  G )
2 feq1 5320 . 2  |-  ( F  =  G  ->  ( F : A --> B  <->  G : A
--> B ) )
31, 2syl 14 1  |-  ( ph  ->  ( F : A --> B 
<->  G : A --> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343   -->wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-f 5192
This theorem is referenced by:  feq12d  5327  fco2  5354  fssres2  5365  fresin  5366  fmpt3d  5641  fmptco  5651  fressnfv  5672  off  6062  caofinvl  6072  f2ndf  6194  eroprf  6594  pmresg  6642  fseq1p1m1  10029  mgmplusf  12597  mgmb1mgm1  12599  lmbr  12853  blfps  13049  blf  13050  dvmptclx  13320  lgsfcl3  13562
  Copyright terms: Public domain W3C validator