ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq1d Unicode version

Theorem feq1d 5332
Description: Equality deduction for functions. (Contributed by NM, 19-Feb-2008.)
Hypothesis
Ref Expression
feq1d.1  |-  ( ph  ->  F  =  G )
Assertion
Ref Expression
feq1d  |-  ( ph  ->  ( F : A --> B 
<->  G : A --> B ) )

Proof of Theorem feq1d
StepHypRef Expression
1 feq1d.1 . 2  |-  ( ph  ->  F  =  G )
2 feq1 5328 . 2  |-  ( F  =  G  ->  ( F : A --> B  <->  G : A
--> B ) )
31, 2syl 14 1  |-  ( ph  ->  ( F : A --> B 
<->  G : A --> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348   -->wf 5192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3587  df-pr 3588  df-op 3590  df-br 3988  df-opab 4049  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-fun 5198  df-fn 5199  df-f 5200
This theorem is referenced by:  feq12d  5335  fco2  5362  fssres2  5373  fresin  5374  fmpt3d  5650  fmptco  5660  fressnfv  5681  off  6071  caofinvl  6081  f2ndf  6203  eroprf  6603  pmresg  6651  fseq1p1m1  10039  mgmplusf  12609  mgmb1mgm1  12611  lmbr  12968  blfps  13164  blf  13165  dvmptclx  13435  lgsfcl3  13677
  Copyright terms: Public domain W3C validator