| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq1d | Unicode version | ||
| Description: Equality deduction for functions. (Contributed by NM, 19-Feb-2008.) |
| Ref | Expression |
|---|---|
| feq1d.1 |
|
| Ref | Expression |
|---|---|
| feq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1d.1 |
. 2
| |
| 2 | feq1 5423 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-br 4055 df-opab 4117 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-fun 5287 df-fn 5288 df-f 5289 |
| This theorem is referenced by: feq12d 5430 fco2 5457 fssres2 5470 fresin 5471 fmpt3d 5754 fmptco 5764 fressnfv 5789 off 6189 caofinvl 6202 f2ndf 6330 eroprf 6733 pmresg 6781 pw2f1odclem 6951 fseq1p1m1 10246 mgmplusf 13283 mgmb1mgm1 13285 grpsubf 13496 lmodscaf 14157 lmbr 14770 blfps 14966 blf 14967 dvmptclx 15275 lgsfcl3 15583 |
| Copyright terms: Public domain | W3C validator |