| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq1d | Unicode version | ||
| Description: Equality deduction for functions. (Contributed by NM, 19-Feb-2008.) |
| Ref | Expression |
|---|---|
| feq1d.1 |
|
| Ref | Expression |
|---|---|
| feq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1d.1 |
. 2
| |
| 2 | feq1 5393 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-fun 5261 df-fn 5262 df-f 5263 |
| This theorem is referenced by: feq12d 5400 fco2 5427 fssres2 5438 fresin 5439 fmpt3d 5721 fmptco 5731 fressnfv 5752 off 6152 caofinvl 6165 f2ndf 6293 eroprf 6696 pmresg 6744 pw2f1odclem 6904 fseq1p1m1 10186 mgmplusf 13068 mgmb1mgm1 13070 grpsubf 13281 lmodscaf 13942 lmbr 14533 blfps 14729 blf 14730 dvmptclx 15038 lgsfcl3 15346 |
| Copyright terms: Public domain | W3C validator |