| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq1d | Unicode version | ||
| Description: Equality deduction for functions. (Contributed by NM, 19-Feb-2008.) |
| Ref | Expression |
|---|---|
| feq1d.1 |
|
| Ref | Expression |
|---|---|
| feq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1d.1 |
. 2
| |
| 2 | feq1 5407 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-fun 5272 df-fn 5273 df-f 5274 |
| This theorem is referenced by: feq12d 5414 fco2 5441 fssres2 5452 fresin 5453 fmpt3d 5735 fmptco 5745 fressnfv 5770 off 6170 caofinvl 6183 f2ndf 6311 eroprf 6714 pmresg 6762 pw2f1odclem 6930 fseq1p1m1 10215 mgmplusf 13140 mgmb1mgm1 13142 grpsubf 13353 lmodscaf 14014 lmbr 14627 blfps 14823 blf 14824 dvmptclx 15132 lgsfcl3 15440 |
| Copyright terms: Public domain | W3C validator |