ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq1d Unicode version

Theorem feq1d 5427
Description: Equality deduction for functions. (Contributed by NM, 19-Feb-2008.)
Hypothesis
Ref Expression
feq1d.1  |-  ( ph  ->  F  =  G )
Assertion
Ref Expression
feq1d  |-  ( ph  ->  ( F : A --> B 
<->  G : A --> B ) )

Proof of Theorem feq1d
StepHypRef Expression
1 feq1d.1 . 2  |-  ( ph  ->  F  =  G )
2 feq1 5423 . 2  |-  ( F  =  G  ->  ( F : A --> B  <->  G : A
--> B ) )
31, 2syl 14 1  |-  ( ph  ->  ( F : A --> B 
<->  G : A --> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   -->wf 5281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-pr 3645  df-op 3647  df-br 4055  df-opab 4117  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-fun 5287  df-fn 5288  df-f 5289
This theorem is referenced by:  feq12d  5430  fco2  5457  fssres2  5470  fresin  5471  fmpt3d  5754  fmptco  5764  fressnfv  5789  off  6189  caofinvl  6202  f2ndf  6330  eroprf  6733  pmresg  6781  pw2f1odclem  6951  fseq1p1m1  10246  mgmplusf  13283  mgmb1mgm1  13285  grpsubf  13496  lmodscaf  14157  lmbr  14770  blfps  14966  blf  14967  dvmptclx  15275  lgsfcl3  15583
  Copyright terms: Public domain W3C validator