| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq23 | GIF version | ||
| Description: Equality theorem for functions. (Contributed by FL, 14-Jul-2007.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| feq23 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2 5403 | . 2 ⊢ (𝐴 = 𝐶 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐵)) | |
| 2 | feq3 5404 | . 2 ⊢ (𝐵 = 𝐷 → (𝐹:𝐶⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) | |
| 3 | 1, 2 | sylan9bb 462 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ⟶wf 5264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 df-fn 5271 df-f 5272 |
| This theorem is referenced by: feq23i 5414 |
| Copyright terms: Public domain | W3C validator |