ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq23 GIF version

Theorem feq23 5458
Description: Equality theorem for functions. (Contributed by FL, 14-Jul-2007.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
feq23 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐹:𝐴𝐵𝐹:𝐶𝐷))

Proof of Theorem feq23
StepHypRef Expression
1 feq2 5456 . 2 (𝐴 = 𝐶 → (𝐹:𝐴𝐵𝐹:𝐶𝐵))
2 feq3 5457 . 2 (𝐵 = 𝐷 → (𝐹:𝐶𝐵𝐹:𝐶𝐷))
31, 2sylan9bb 462 1 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐹:𝐴𝐵𝐹:𝐶𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wf 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-fn 5320  df-f 5321
This theorem is referenced by:  feq23i  5467
  Copyright terms: Public domain W3C validator